Communication
ChemComm
Notes and references
1 (a) M. Villacrez and P. Somfai, Tetrahedron Lett., 2013, 54, 5266;
(b) O. K. Karjalainen and A. M. P. Koskinen, Org. Biomol. Chem.,
2012, 10, 4311; (c) J. A. Bodkin and M. D. McLeod, J. Chem. Soc.,
Perkin Trans. 1, 2002, 2733; (d) S. C. Bergmeier, Tetrahedron, 2000,
56, 2561; (e) T. J. Dobohoe, C. K. A. Callens, A. Flores, A. R. Lacy and
A. H. Rathi, Chem. – Eur. J., 2011, 17, 58.
2 (a) Y. Zhao, N. Jiang, S. Chen, C. Peng, X. Zhang, Y. Zou, S. Zhang and
J. Wang, Tetrahedron, 2005, 61, 6546; (b) Y. Qian, X. Xu, L. Jiang,
D. Prajapati and W. Hu, J. Org. Chem., 2010, 75, 7483; (c) S. Matsunaga,
T. Yoshida, H. Morimoto, N. Kumagai and M. Shibasaki, J. Am. Chem.
Soc., 2004, 126, 8777; (d) P. Dziedzic, P. Schyman, M. Kullberg and
Scheme 4 Reaction conditions: (a) (Boc)2O, Et3N, cat. DMAP, CH2Cl2,
100%; (b) (i) PhCO2NH4, DMF, 55 1C, 12 h; (ii) 1N HCl, CH2Cl2, 6 h, rt, 82%;
(c) KCN, MeOH, 65 1C, 85%; (d) 1N NaOH, MeOH–THF, rt, 88%.
´
A. Cordova, Chem. – Eur. J., 2009, 15, 4044; (e) Y. Wang, Q.-F. He, H.-W.
Wang, X. Zhou, Z.-Y. Huang and Y. Qin, J. Org. Chem., 2006, 71, 1588;
( f ) M. Bruncko, G. Schlingloff and K. B. Sharpless, Angew. Chem., Int. Ed.
Engl., 1997, 36, 1483; (g) P. O’Brien, Angew. Chem., Int. Ed., 1999, 38, 326.
3 For selected reviews, (a) T. Ikariya and A. J. Blacker, Acc. Chem. Res., 2007,
40, 1300; (b) T. Ikariya, K. Murata and R. Noyori, Org. Biomol. Chem., 2006,
4, 393; (c) R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97.
4 (a) D. Cartigny, K. Puntener, T. Ayad, M. Scalone and V. Ratovelomanana-
Vidal, Org. Lett., 2010, 12, 3788; (b) B. Mohar, A. Valleix, J.-R. Desmurs,
M. Felemez, A. Wagner and C. Mioskowski, Chem. Commun., 2001, 2572;
(c) B. Seashore-Ludlow, P. Villo, C. Hacker and P. Somfai, Org. Lett., 2010,
12, 5274; (d) A. Ros, A. Magriz, H. g. Dietrich, J. M. Lassaletta and
R. Fernadez, Tetrahedron, 2007, 63, 7532.
5 (a) J. Limanto, S. W. Krska, B. T. Dorner, E. Vazquez, N. Yoshikawa
and L. Tan, Org. Lett., 2010, 12, 512; (b) S.-M. Son and H.-K. Lee,
J. Org. Chem., 2013, 78, 8396.
6 S.-M. Son and H.-K. Lee, J. Org. Chem., 2014, 79, 2666.
7 (a) T. Koike, K. Murata and T. Ikariya, Org. Lett., 2000, 2, 3833;
(b) K. Murata, K. Okano, M. Miyagi, H. Iwane, R. Noyori and
T. Ikariya, Org. Lett., 1999, 1, 1119.
Scheme 5 Reaction conditions: (a) (Boc)2O, Et3N, cat. DMAP, CH2Cl2, 94%;
(b) (i) PhCO2NH4, DMF, 55 1C, 12 h; (ii) 1N HCl, CH2Cl2, 6 h, rt, 100%; (c) KCN,
MeOH, 65 1C, 86%; (d) NaBH4, MeOH, rt, 92%; (e) NaH, THF, rt, 95%.
In order to demonstrate the utility of the methodology
developed in this effort, we employed it in the synthesis of
the taxotere side-chain 1017 (Scheme 4).
Accordingly, (S,S)-7a formed by ATH–DKR reaction of 6a is
converted to its N-Boc derivative, which upon treatment with
PhCO2NH4 undergoes ring opening10a,19 to form (2R,3S)-8a.
Selective removal of the O-benzoyl group in 8a using KCN11
in MeOH and subsequent hydrolysis of methyl ester 9a produce
the taxotere side-chain 1017 (ca. 61% overall yield over 4 steps
from (S,S)-7a).
8 (a) K. M. Steward, M. T. Corbett, C. G. Goodman and J. S. Johnson,
J. Am. Chem. Soc., 2012, 134, 20197; (b) C. G. Goodman, D. T. Do and
J. S. Johnson, Org. Lett., 2013, 15, 2446.
9 M. T. Corbett and J. S. Johnson, J. Am. Chem. Soc., 2013, 135, 594.
10 (a) J. Han, S. Kang and H.-K. Lee, Chem. Commun., 2011, 47, 4004;
(b) S. Kang, J. Han, E. S. Lee, E. B. Choi and H.-K. Lee, Org. Lett.,
An additional example demonstrating the usefulness of the
methodology is found in the synthesis of (À)-epi-cytoxazone
(12) starting with (S,S)-7j (Scheme 5)2b,18 (ca. 70% overall yield
over 5 steps from (S,S)-7j).
¨
2010, 12, 4184; (c) C. Schu¨ttler, Z. Li-Bohmer, K. Harms and P. von
Zezschwitz, Org. Lett., 2013, 15, 800.
11 H.-K. Lee, S. Kang and E. B. Choi, J. Org. Chem., 2012, 77, 5454.
12 J. Limanto, S. W. Krska, B. T. Dorner, E. Vazquez, N. Yoshikawa and
L. Tan, Org. Lett., 2009, 12, 512.
13 K. Mashima, T. Abe and K. Tani, Chem. Lett., 1998, 1199.
14 J. Mao and D. C. Baker, Org. Lett., 1999, 1, 841.
15 X. Zhou, X. Wu, B. Yang and J. Xiao, J. Mol. Catal. A: Chem., 2012,
357, 133.
16 (a) R. E. Meledez and W. D. Lubell, Tetrahedron, 2003, 59, 2581;
(b) J. F. Bower, J. Rujirawanich and T. Gallagher, Org. Biomol. Chem.,
2010, 8, 1505.
17 X. Shen, J. Yang, H. Zhan, H. Wang, S. Wu and Z. Chen, Chin.
J. Chem., 2013, 31, 31.
18 (a) S. V. Narina, T. S. Kumar, S. George and A. Sudalai, Tetrahedron
Lett., 2007, 48, 65; (b) I. S. Kim, J. D. Kim, C. B. Ryu, O. P. Zee and
Y. H. Jung, Tetrahedron, 2006, 62, 9349; (c) R. K. Mishra, C. M. Coates,
K. D. Revell and E. Turos, Org. Lett., 2007, 9, 575; (d) R. S. Reddy,
P. V. Chouthaiwale, G. Suryavanshi, V. B. Chavan and A. Sudalai,
Chem. Commun., 2010, 46, 5012; (e) S.-G. Kim and T.-H. Park, Tetra-
hedron: Asymmetry, 2008, 19, 1626.
In summary, a convenient and highly stereoselective method for
the preparation of 4-substituted cyclic sulfamidate-5-carboxylate
esters 7 was developed in this investigation. The process, involving
asymmetric transfer hydrogenation accompanied by dynamic kinetic
resolution (ATH–DKR), uses HCO2H/Et3N as the hydrogen source
and chiral Rh catalysts (S,S)- or (R,R)-Cp*RhCl(TsDPEN). Most of the
ATH–DKR reactions probed in this study occur rapidly (30 min) and
highly stereoselectively under mild and experimentally convenient
conditions (rt, without the need for solvent degassing or an inert
atmosphere). The utility of this methodology was demonstrated by
its application to stereoselective syntheses of the taxotere side-chain
and (À)-epi-cytoxazone.
This research was financially supported by grants from the
National Research Foundation of Korea (2008-2004732) and
Korea Research Institute of Chemical Technology (SI-1405).
19 H. Leisch, B. Sullivan, B. Fonovic, T. Dudding and T. Hudlicky,
Eur. J. Org. Chem., 2009, 2806.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 13706--13709 | 13709