846
H. Yu et al.
LETTER
O
O
O
O
TBHP
TBAI
R
R
I
R
R
ArOH
cyclization
OAr
OAr
2 C–O bond
formations
O
OH
O
OH
1
7
8
3
Scheme 3 Proposed pathway
Synlett 2002, 501. (d) Inoue, A.; Kitagawa, K.; Shinokubo,
H.; Oshima, K. J. Org. Chem. 2001, 66, 4333. (e) Coe, J. W.;
Bianco, K. E.; Boscoe, B. P.; Brooks, P. R.; Cox, E. D.;
Vetelino, M. G. J. Org. Chem. 2003, 68, 9964. (f) Farran, D.;
Bertrand, P. Synth. Commun. 2012, 42, 989.
conditions, 3a could be isolated in 62% yield (Scheme 2,
eq. 2).
These results suggested that benzofuran-3-(2H)-one (8)
might be the crucial intermediate of the reaction, which
was generated from 1 via sequence iodonation–cycliza-
tion reaction. Then 8 was converted into the final product
3 through two iodonation–C–O bond formation processes
(Scheme 3). More details of the mechanism still need fur-
ther investigation.
(4) (a) Moriarty, R. M.; Prakash, O.; Prakash, I. Chem.
Commun. 1984, 20, 1342. (b) Fan, R.; Sun, Y.; Ye, Y. Org.
Lett. 2009, 11, 5174.
(5) (a) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X.
Angew. Chem. Int. Ed. 2012, 51, 3231. (b) Mai, W. P.;
Wang, H. H.; Li, Z. C.; Yuan, J. W.; Xiao, Y. M.; Yang, L.
R.; Mao, P.; Qu, L. B. Chem. Commun. 2012, 48, 10117.
(c) Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun.
2012, 48, 979. (d) Uyanik, M.; Suzuki, D.; Yasui, T.;
Ishihara, K. Angew. Chem. Int. Ed. 2011, 50, 5331. (e) Chen,
L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan,
X. Chem. Eur. J. 2011, 17, 4085. (f) Shi, E.; Shao, Y.; Chen,
S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett. 2012, 14,
3384. (g) Ma, L.; Wang, X.; Yu, W.; Han, B. Chem.
Commun. 2011, 47, 11333. (h) Huang, J.; Li, L. T.; Li, H. Y.;
Husan, E.; Wang, P.; Wan, B. Chem. Commun. 2012, 48,
10204. (i) Zhang, J.; Jiang, J.; Li, Y.; Wan, X. J. Org. Chem.
2013, 78, 11366. (j) Zhang, J.; Jiang, J.; Li, Y.; Zhao, Y.;
Wan, X. Org. Lett. 2013, 15, 3222.
In summary, we have developed a one-pot method for the
synthesis of 2-aryloxybenzofuran-3(2H)-ones from o-ac-
ylphenols and phenols under TBHP/TBAI-catalyzed con-
ditions. The procedure was easy to handle and various 2-
aryloxybenzofuran-3(2H)-ones have been synthesized by
such a strategy. Investigation for the details of the reaction
mechanism is still in progress in our lab.
Acknowledgment
Financial support from Tongji University (20123231) is gratefully
acknowledged.
(6) (a) Lamani, M.; Prabhu, K. R. Chem. Eur. J. 2012, 18,
14638. (b) Yan, Y.; Zhang, Y.; Zha, Z.; Wang, Z. Org. Lett.
2013, 15, 2274.
Supporting Information for this article is available online at
(7) (a) Xu, K.; Hu, Y.; Zhang, S.; Zha, Z.; Wang, Z. Chem. Eur.
J. 2012, 18, 9793. (b) Zhang, X.; Wang, L. Green Chem.
2012, 14, 2141. (c) Wei, W.; Shao, Y.; Hu, H.; Zhang, F.;
Zhang, C.; Xu, Y.; Wan, X. J. Org. Chem. 2012, 77, 7157.
(d) Zhang, J.; Wang, Z.; Wang, Y.; Wan, C.; Zheng, X.;
Wang, Z. Green Chem. 2009, 11, 1973. (e) Wang, Q.; Wan,
C.; Gu, Y.; Zhang, J.; Gao, L.; Wang, Z. Green Chem. 2011,
13, 578. (f) Jiang, H.; Huang, H.; Cao, H.; Qi, C. Org. Lett.
2010, 12, 5561. (g) Wan, C.; Gao, L.; Wang, Q.; Zhang, J.;
Wang, Z. Org. Lett. 2010, 12, 3902. (h) Zhang, J.; Zhu, D.;
Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
(i) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513.
(8) Typical Experimental Procedure for the Synthesis of
2,2-Bis(4-nitrophenoxy)benzofuran-3(2H)-one (3a)
In a 15 mL reaction tube a mixture of 2-acetylphenol (1a, 68
mg, 0.5 mmol), 4-nitrophenol (2a, 174 mg, 1.25 mmol), t-
BuOOH (70% in H2O, 2 mmol), TBAI (55 mg, 0.15 mol) in
MeCN (2.0 mL) was stirred at r.t. under air for 16 h, until
complete consumption of starting material as monitored by
TLC. After the reaction was finished, the mixture was
quenched with sat. Na2S2O3 solution, then extracted with
EtOAc, dried over anhydrous Na2SO4, and evaporated in
vacuum. The residue was purified by flash column
chromatography on silica gel (PE–EtOAc, 8:1) to give the
product 3a.
1
synthesis and characterization data and copies of the H and 13C
NMR spectra.SunorpngIoptifmanir
SugpiInoftrmpatrion
t
References and Notes
(1) (a) Hadj-esfandiari, N.; Navidpour, L.; Shadnia, H.; Amini,
M.; Samadi, N.; Faramarzid, M. A.; Shafiee, A. Bioorg.
Med. Chem. Lett. 2007, 17, 6354. (b) Manjulatha, K.;
Srinivas, S.; Mulakayala, N.; Rambabu, D.; Prabhakar, M.;
Arunasree, K. M.; Alvala, M.; Basaveswara, M. V. Bioorg.
Med. Chem. Lett. 2012, 22, 6160. (c) Charrier, C.; Clarhaut,
J.; Gesson, J. P.; Estiu, G.; Wiest, O.; Roche, J.; Bertrand, P.
J. Med. Chem. 2009, 52, 3112.
(2) (a) Zhou, G.; Zhu, J.; Xie, Z.; Li, Y. Org. Lett. 2008, 10, 721.
(b) Gormemis, A. E.; Ha, T. S.; Im, I.; Jung, K. Y.; Lee, J.
Y.; Park, C. S.; Kim, Y. C. ChemBioChem 2005, 6, 1745.
(c) Venkatesan, A. M.; Santos, O. D.; Ellingboe, J.; Evrard,
D. A.; Harrison, B. L.; Smith, D. L.; Scerni, R.; Hornby, G.
A.; Schechter, L. E.; Andree, T. H. Bioorg. Med. Chem. Lett.
2010, 20, 824.
(3) (a) Deshpande, A. R.; Paradkar, M. V. Synth. Commun.
1990, 20, 809. (b) Ghosh, S.; Datta, I.; Chakraborty, R.; Das,
T. K.; Sengupta, J.; Sarkar, D. C. Tetrahedron 1989, 45,
1441. (c) Morice, C.; Garrido, F.; Mann, A.; Suffert, J.
Synlett 2014, 25, 843–846
© Georg Thieme Verlag Stuttgart · New York