Journal of the American Chemical Society
Page 4 of 5
1345. (c) Pan, J.; Kampf, J. W.; Ashe, A. J., III. J. Organomet. Chem. 2009, 694,
1036.
(5) For select other examples of coordination compounds associated with
single BN/CC replacement, see: (a) Bailey, J. A.; Haddow, M. F.; Pringle, P. G.
Chem. Commun. 2014, 50, 1432. (b) Bailey, J. A.; Ploeger, M.; Pringle, P. G.
Inorg. Chem. 2014, 53, 7763. (c) Ko, S. B.; Lu, J. S.; Wang S. Org. Lett. 2014, 16,
616.
(6) For leading references to 1,2-azaborolyl ligands as BN/CC isosteres of
the cyclopentadienyl ligand, see: (a) Schmid, G. Comments Inorg. Chem. 1985,
4, 17. (b) Liu, S.-Y.; Lo, M. M.-C.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
174.
(7) Xu, S.; Haeffner, F.; Li, B.; Zakharov, L. N.; Liu, S.-Y. Angew. Chem. Int.
Ed. 2014, 53, 6795.
(8) Matsumoto, Y.; Naito, M.; Hayashi T. Organometallics 1992, 11, 2732.
(9) For recent examples of non-transition-metal-mediated trans-
hydroboration, see: (a) Yuan, K.; Suzuki, N.; Mellerup, S. K.; Wang, X.; Yama-
guchi, S.; Wang, S. Org. Lett. 2016, 18, 720. (b) McGough, J. S.; Butler, S. M.;
Cade, I. A.; Ingleson, M. J. Chem. Sci. 2016, 7, 3384.
(10) Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122,
4990.
(11) Gunanathan, C.; Hoelscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc.
2012, 134, 14349.
(12) Obligacion, J. V.; Neely, J. M.; Yazdani, A. N.; Pappas, I.; Chirik, P. J. J.
Am. Chem. Soc. 2015, 137, 5855.
In summary, we have developed a modular and concise synthesis of
1
2
3
4
5
6
7
8
monobenzofused 1,4-azaborine-based phosphine ligands. Their Pd(0)
complexes have been found to catalyze trans-hydroboration of both
terminal and internal E-1,3-enynes with high site- and stereo-selectivity
under mild conditions. The method is also amendable to gram-scale
synthesis without erosion of selectivity. Mechanistic studies including
the origin of trans-hydroboration selectivity and further application of
Senphos ligands in catalytic transformations are currently underway in
our laboratory.
9
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, spectroscopic data, and crystallographic data
(CIF). This material is available free of charge via the Internet at
http://pubs.acs.org.”
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
(13) Jang, W. J.; Lee, W. L.; Moon, J. H.; Lee, J. Y.; Yun, J. Org. Lett. 2016,
18, 1390.
Present Addresses
§State Key Laboratory for Oxo Synthesis and Selective Oxidation, Su-
zhou Research Institute of LICP, Lanzhou Institute of Chemical Phys-
ics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
(14) Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 14050.
(15) Two relatively expensive catalysts were involved that had to be used at
relatively high catalyst loadings: Grubbs second generation catalyst at 10 mol%
loading, and [(PPh3)3(CO)(Cl)RuH] at 2 mol% loading.
(16) For select recent examples, see: (a) Hatakeyama, T.; Hashimoto, S.;
Seki, S.; Nakamura, M. J. Am. Chem. Soc. 2011, 133, 18614. (b) Wang, X.-Y.;
Zhuang, F.-D.; Wang, R.-B.; Wang, X.-C.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. J. Am.
Chem. Soc. 2014, 136, 3764.
(17) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem.
Commun. 2009, 1574.
(18) Compounds 3a-c are formed after the exchange of the B-Ni-Pr2 group
with the in situ generated HCl.
(19) In order to isolate dienylboronate, the catecholboronate was converted
to pinacolboronate prior to column chromatography using similar procedures in
reference 10. No erosion of stereochemistry was observed after transesterifica-
tion.
(20) Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem.
Int. Ed. 2011, 50, 2778.
(21) At 0.25 M concentration, the reaction was sluggish.
(22) The use of an analogous carbonaceous ligand CC-L3 as the supporting
ligand in the hydroboration reaction of 6l led to incomplete conversion and
significant formation of cis- and 1,4-hydroboration byproducts, see Supporting
Information for details.
(23) Eberlin, L.; Tripoteau, F.; Carreaux, F.; Whiting, A.; Carboni, B.
Beilstein J. Org. Chem. 2014, 10, 237.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This research was supported by the National Institutes of Health
NIGMS (R01-GM094541) and Boston College start-up funds. We
thank Dr. Lev N. Zakharav for solving the X-ray structure for com-
pound 3a. S.-Y.L. thanks the Camille Dreyfus Teacher-Scholar Awards
Program for a Teacher-Scholar award and the Humboldt Foundation
for the Friedrich Wilhelm Bessel Research Award.
REFERENCES
(1) For an overview, see: (a) Liu, Z.; Marder, T. B. Angew. Chem. Int. Ed.
2008, 47, 242. (b) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. 2009, 87, 8. (c)
Campbell, P. G.; Marwitz, A. J. V.; Liu, S.-Y. Angew. Chem. Int. Ed. 2012, 51,
6074.
(2) (a) Wang, X.-Y.; Wang, J.-Y.; Pei, J. Chem. Eur. J. 2015, 21, 3528. (b)
Morgan, M. M.; Piers, W. E. Dalton Trans. 2016, 45, 5920.
(3) (a) Vlasceanu, A.; Jessing, M.; Kilburn, J. P. Bioorg. Med. Chem. 2015, 23,
4453. (b) Rombouts, F. J.; Tovar, F.; Austin, N.; Tresadern, G.; Trabanco, A. A.
J. Med. Chem. 2015, 58, 9287. (c) Sanchez Casado, M. R.; Ciordia Jimenez, M.;
Ariza Bueno, M.; Barriol, M.; Leenaerts, J. E.; Pagliuca, C.; Martinez Lamenca,
C.; De Lucas, A. I.; Garcia, A.; Trabanco, A. A.; Rombouts, F. J. R. Eur. J. Org.
Chem. 2015, 5221. (d) Davies, G. H.; Molander, G. A. J. Org. Chem. 2016, 81,
3771. (e) Amani, J.; Molander, G. A. Org. Lett. 2015, 17, 3624. (f) Molander, G.
A.; Wisniewski, S. R.; Amani, J. Org. Lett. 2014, 16, 5636. (g) Liu, L.; Marwitz,
A. J. V.; Matthews, B. W.; Liu, S.-Y. Angew. Chem. Int. Ed. 2009, 48, 6817. (h)
Abbey, E. R.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2011, 133, 11508. (i)
Abbey, E. R.; Liu, S.-Y. Org. Biomol. Chem. 2013, 11, 2060. (j) Chrostowska, A.;
Xu, S.; Mazière, A.; Boknevitz, K.; Li, B.; Abbey, E. R.; Dargelos, A.; Graciaa, A.;
Liu, S.-Y. J. Am. Chem. Soc. 2014, 136, 11813. (k) Saif, M.; Widom, J. R.; Xu, S.;
Abbey, E. R.; Liu, S.-Y.; Marcus, A. H. J. Phys. Chem. B 2015, 119, 7985. (l)
Knack, D. H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec, M.; Liu, S.-
Y.; Heider, J. Angew. Chem. Int. Ed. 2013, 52, 2599. (m) Rudebusch, G. E.;
Zakharov, L. N.; Liu, S.-Y. Angew. Chem. Int. Ed. 2013, 52, 9316.
(24) (a) Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, 6722. (b) Miyaura, N.;
Suzuki, A. Chem. Rev. 1995, 95, 2457.
(25) Hilt, G.; Bolze, P. Synthesis 2005, 2005, 2091.
(26) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature
2008, 456, 778.
(27) The κ2-P-η2-BC coordination mode to Pd(0) is also observed in solu-
tion, consistent with a significant upfield shift in the 11B NMR compared to
corresponding free ligand (32 ppm vs. 46 ppm).
(28) For leading references on the effects of Pd-arene interactions in cataly-
sis, see: (a) Arrechea, P. L.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 12486.
(b) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 4685. (c) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J.
Am. Chem. Soc. 2002, 124, 1162.
(4) For leading examples of coordination compounds with direct involve-
ment of the azaborine ring atoms, see: (a) Ashe, A. J., III. Organometallics 2009,
28, 4236. (b) Pan, J.; Kampf, J. W.; Ashe,,A. J., III. Organometallics 2008, 27,
ACS Paragon Plus Environment