Solvent-Free Carbon–Oxygen Bond Formation Catalysed by CeCl3·7H2O/NaI
FULL PAPER
3.85–3.95 (m, 1 H, CH2), 4.50–4.60 (m, 1 H, CH) ppm. 13C NMR:
δ = –5.2, 18.3, 19.6, 25.5, 25.9, 26.1, 29.6, 30.7, 62.2, 63.0, 67.4,
7891–7894; d) J. S. Yadav, B. V. Subba Reddy, D. Guaneshwar,
New J. Chem. 2003, 27, 202–204; e) V. V. Namboodiri, R. S.
Verma, Chem. Commun. 2002, 342–343; f) N. Deka, J. C.
Sarma, Synth. Commun. 2000, 30, 4435–4441; g) M. A. Reddy,
L. R. Reddy, N. Bhanumathi, K. R. Rao, Synth. Commun.
2000, 30, 4323–4328; h) N. Rezai, F. A. Meybodi, P. Salehi,
Synth. Commun. 2000, 30, 1799–1805; i) G. Maity, S. C. Roy,
Synth. Commun. 1993, 23, 1667–1671.
98.7 ppm. IR (neat): ν = 2942, 2878, 1431, 1280, 1050 cm–1. MS:
˜
m/z = 330 [M]+, 315, 273, 173, 143, 101, 85 (100), 69, 57, 43.
C15H32O3Si (288.50): calcd. C 62.45, H 11.18; found C 62.39, H
11.10.
Triisopropyl[4-(tetrahydro-2H-pyran-2-yloxy)butoxy]silane (3u): 1H
NMR: δ = 0.95–1.15 (m, 21 H, CH and CH3), 1.45–1.85 (m, 10 H,
5×CH2), 3.35–3.45 (m, 1 H, CH2), 3.45–3.55 (m, 1 H, CH2), 3.65–
3.80 (m, 3 H, CH and CH2), 3.82–3.90 (m, 1 H, CH2), 4.56–4.60
(m, 1 H, CH) ppm. 13C NMR: δ = 12.0, 18.0, 20.0, 25.5, 26.0, 29.5,
[12] J. R. Stephens, P. L. Butler, C. H. Claw, M. C. Oswald, R. C.
Smith, R. S. Mohan, Eur. J. Org. Chem. 2003, 3827–3831.
[13] Kobayashi, S., in: Lanthanides: Chemistry and Use in Organic
Synthesis (Ed.: S. Kobayashi), Springer: Berlin, 1999; p. 63–
118.
31.0, 62.0, 63.5, 67.5, 99.3 ppm. IR (neat): ν = 2945, 2893, 1420,
˜
[14] G. Bartoli, E. Marcantoni, L. Sambri, Synlett 2003, 2101–
1248, 1104 cm–1. MS: m/z 330 [M]+, 287, 173, 157, 101, 85, 69, 43
(100). C18H38O3Si (330.58): calcd. C 65.40, H 11.59; found C 65.36,
H 11.57.
2116, and references therein.
[15] a) W.-D. Z. Li, Y. Peng, Org. Lett. 2005, 7, 3069–3072, and
references cited therein; b) L. M. Urbaneja, N. Krause, Eur. J.
Org. Chem. 2004, 4467–4470.
[16] a) G. Bartoli, M. Bosco, S. Giuli, A. Giuliani, L. Lucarelli, E.
Marcantoni, L. Sambri, E. Torregiani, J. Org. Chem. 2005, 70,
1941–1944; b) G. Bartoli, M. Bosco, G. Foglia, A. Giuliani, E.
Marcantoni, L. Sambri, Synthesis 2004, 895–900; c) G. Bartoli,
M. Bosco, A. Giuliani, E. Marcantoni, A. Palmieri, M. Petrini,
L. Sambri, J. Org. Chem. 2004, 69, 1290–1297; d) G. Bartoli,
M. Bartolacci, M. Bosco, G. Foglia, A. Giuliani, E. Marcan-
toni, L. Sambri, E. Torregiani, J. Org. Chem. 2003, 68, 4594–
4597; e) G. Bartoli, M. Bosco, M. C. Bellucci, E. Marcantoni,
L. Sambri, E. Torregiani, Eur. J. Org. Chem. 1999, 617–620.
[17] a) G. Bartoli, M. Bartolacci, A. Giuliani, E. Marcantoni, M.
Massaccesi, E. Torregiani, J. Org. Chem. 2005, 70, 169–174; b)
G. Bartoli, M. Bosco, E. Marcantoni, M. Petrini, L. Sambri,
E. Torregiani, J. Org. Chem. 2001, 66, 9052–9055.
[18] a) E. Marotta, E. Foresti, T. Marcelli, F. Peri, P. Righi, N.
Scardovi, G. Rosini, Org. Lett. 2002, 4, 4451–4453; b) J. S. Ya-
dav, B. V. S. Reddy, K. Bhaskar Reddy, M. Satyanarayana, Tet-
rahedron Lett. 2002, 43, 7009–7012.
[19] P. T. Anastas, M. M. Kirchoff, T. C. Williamson, Appl. Catal.
A 2001, 221, 3–19.
Acknowledgments
Work was carried out in the framework of the National Project
“Stereoselezione in Sintesi Organica. Metodologie e Applicazioni”
and the National Project “Studio degli Aspetti Teorici ed Applica-
tivi degli Aggregati di Molecole Target su Siti Catalitici Stereoselet-
tivi” supported by the MIUR, Rome, by the University of Bologna
and by the University of Camerino. M. P. gratefully acknowledges
the Pfizer Ascoli Piceno Plant for a postgraduate fellowship.
[1] K. Jarowicki, P. J. Kocienski, J. Chem. Soc., Perkin Trans. 1
2000, 2495–2527.
[2] a) A. Studer, S. Hadida, R. Ferritto, S.-Y. Kim, P. Jegar, P.
Wipf, D. P. Curran, Science 1997, 275, 823–826; b) B. M. Trost,
D. L. Van Vrauken, Chem. Rev. 1996, 96, 395–422.
[3] P. J. Kocienski, Protecting Groups, 4th ed., Thieme, Stuttgart,
2005.
[4] R. Palmacci, M. C. Hewitt, P. H. Seeberger, Angew. Chem. Int.
Ed. 2001, 40, 4433–4437.
[5] C. B. Reese, in: Protective Groups in Organic Chemistry (Ed.:
J. F. W. McOmie), Plenum Press, London, 1973, chapter 3.
[6] a) V. Debal, T. Cuvigny, M. Larcheveque, Synthesis 1976, 391–
393; b) E. J. Corey, R. H. Wollenberg, J. Org. Chem. 1975, 40,
2265–2666.
[20] T. Okuhara, Chem. Rev. 2002, 102, 3641–3666.
[21] P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Prac-
tice, Oxford University Press, Oxford, 1998.
[22] J. O. Metzger, Angew. Chem. Int. Ed. 1998, 37, 2975–2978.
[23] J.-M. Conia, P. Amice, Bull. Soc. Chim. Fr. 1970, 2972–2980.
[24]
[25]
[α]D values were compared with those of authentic samples.
G. Bartoli, M. C. Bellucci, M. Petrini, E. Marcantoni, L. Sam-
bri, E. Torregiani, Org. Lett. 2000, 2, 1791–1793.
A. Motoji, H. Takaoki, K. Takeo, Chem. Lett. 1994, 1789–
1792.
[7] C. Anselmi, M. Centini, M. Mariani, A. Sega, P. Pelosi, J.
Agric. Food Chem. 1992, 40, 853–856.
[26]
[8] a) D. Tanner, P. Somfai, Tetrahedron 1987, 43, 4395–4406; b)
G. Olah, A. Hasain, B. P. Singh, Synthesis 1985, 703–704; c) Y.
Morizawa, I. Mori, T. Hiyama, H. Nozaki, Synthesis 1981,
899–901; d) K. F. Bernardy, M. B. Floyd, J. F. Poletto, M. J.
Weiss, J. Org. Chem. 1979, 44, 1438–1447; e) E. J. Corey, H.
Niwa, J. Knolle, J. Am. Chem. Soc. 1978, 100, 1942–1943; f)
M. Miyashita, A. Yoshikoshi, P. A. Grieco, J. Org. Chem. 1977,
42, 3772–3774.
[9] As much as 20% of the starting hydroxy compound may be
present at equilibrium, which, once reached, can be shifted
towards the THP product by adding excess finely powdered
potassium carbonate, and stirring the reaction mixture at room
temperature. As the acid concentration gradually diminishes,
the reaction goes to completion.
[10] a) A. Hegedüs, I. Vígh, Z. Hell, Synth. Commun. 2004, 34,
4145–4152; b) R. Ballini, F. Bigi, S. Carloni, R. Maggi, G. Sar-
tori, Tetrahedron Lett. 1997, 38, 4169–4172; c) P. Kumar, C. H.
Dinesh, R. S. Reddy, B. Pandey, Synthesis 1993, 1069–1070; d)
S. Hoyer, P. Laszlo, M. Orlovic, E. Polla, Synthesis 1986, 655–
656.
[11] a) M. M. Heravi, F. K. Behbahani, H. A. Oskooie, R. H.
Shoar, Tetrahedron Lett. 2005, 46, 2543–2545; b) Y. J. Kim,
R. S. Varma, Tetrahedron Lett. 2005, 46, 1467–1469; c) A. T.
Khan, L. H. Choudhury, S. Ghosh, Tetrahedron Lett. 2004, 45,
[27]
[28]
[29]
N. Hamada, T. Sato, Synlett 2004, 1802–1804.
A. Semwal, S. K. Nayak, Synthesis 2005, 71–74.
G. Bartoli, M. C. Bellucci, M. Bosco, A. Cappa, E. Marcan-
toni, L. Sambri, E. Torregiani, J. Org. Chem. 1999, 64, 5696–
5699.
[30]
[31]
[32]
G. Bartoli, M. Bosco, E. Marcantoni, L. Sambri, E. Torregiani,
Synlett 1998, 209–211.
G. Bartoli, M. Bosco, E. Marcantoni, F. Nobili, L. Sambri, J.
Org. Chem. 1997, 62, 4183–4184.
a) S. Fukuzawa, T. Tsuruta, T. Fujinami, S. Sakai, J. Chem.
Soc., Perkin Trans. 1 1987, 1473–1477; b) S. Fukuzawa, T. Fuji-
nami, S. Sakai, J. Chem. Soc., Chem. Commun. 1985, 777–778.
T. Imamoto, N. Takeda, Org. Synth. 1998, 76, 228–238.
V. Kavala, A. Kumar Samal, B. K. Patel, Arkivoc 2005, 20–29.
T. C. Wabnitz, J.-Q. Yu, J. B. Spencer, Chem. Eur. J. 2004, 10,
484–493.
[33]
[34]
[35]
[36]
For the use of 2,6-di-tert-butyl-4-methylpyridine, see: a)
A. G. M. Barrett, D. C. Braddock, J. P. Henshke, E. R. Walker,
J. Chem. Soc., Perkin Trans. 1 1999, 873–878; b) T. K. Hollis,
B. Bosnich, J. Am. Chem. Soc. 1995, 117, 4570–4581.
G. Sudhakar Reddy, P. Neelakautan, D. S. Iyengar, Synth.
Commun. 2000, 30, 4107–4111.
[37]
Eur. J. Org. Chem. 2006, 1476–1482
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1481