A R T I C L E S
Zhang et al.
in a lack of resonance stabilizing and a redistribution of charge.
Jorgensen and Gao7 and Ciepak and Kollman8 have explored
the relative stabilities of cis-trans-amide conformers of N-
methylacetamide by ab initio calculations and molecular simula-
tions in the gas phase and in aqueous solution.
A special example of azapeptides is the azatide that is defined
as a “pure azapeptide”, where the R-carbon for each amino acid
is changed to nitrogen.31,32 An inhibitor of renin prepared by
Gante et al.27 was the first example of a biologically active
azatide.
Lee et al.33 studied by ab initio calculations the structural
perturbation introduced into formyl-amino acid-amides by
changing the R-carbon to nitrogen. The global minimum energy
conformation for these compounds (azGly, AzAla, AzLeu)
suggested a â-turn motif with the aza residue at the i + 2nd
position. The peptide Boc-Phe-azLeu-Ala-OMe was prepared,
and its structural preference was determined in organic solvents.
The data supported a type II â-turn as predicted. More relevant
to this study, azapeptides containing azaproline (azPro) have
been shown to prefer the â-turn type VI in crystals34,35 and also
by NMR studies36 in organic solvents. The two adjacent
nitrogens in the ring show a clear pyramidal character in the
reported crystal structures. The amide bond is also longer, giving
a lower barrier for the cis-trans isomerization. This finding is
also supported by a theoretical study of diformylhydrazine by
Reynolds at al.37 The calculations are focused on the Z,Z, Z,E,
and E,E conformations of diformylhydrazine as well as the
rotational barrier for the CO-N-N-CO torsional angle. In
these calculations, the two nitrogens had a pyramidal conforma-
tion for all of the conformations. The fact that diformylhydrazine
has a flat conformation in crystal structures is probably due to
crystal packing forces in that a planar conformation allows
stacked sheets of hydrogen-bonded networks. Aza-amino acids
have also been used in the backbone in a peptide/oligourea/
azapeptide hybrid for inducing a hairpin turn.38
The focus of this paper is the quantitative determination both
computationally and experimentally of the conformational
influence of azaproline (azPro) in stabilizing reverse-turn
conformations in peptides. The previous observations34-36 that
the enhanced cis-amide conformation was induced by azPro
increased the probability of type VI reverse-turns. Analogues
of thyrotropin-releasing hormone (TRH) containing azPro were
included to further probe the receptor-bound conformation of
TRH. TRH is a natural tripeptide, L-pyroglutamyl-L-histidyl-
L-proline-amide (pGlu-His-Pro-NH2), a prominent neuromes-
senger released from the hypothalamus that controls the release
of thyroid stimulating hormone (TSH) from the pituitary. Several
papers have investigated the solution conformation of TRH39-42
in the hopes of gaining insight into the biologically relevant
conformation. One study has shown that the activity is correlated
There are many examples of how the peptide backbone can
be modified to help stabilize a desired conformation. We have
previously studied the conformational space for the Pro-D-NMe-
amino acid sequence9 and also the effect of N-methylation and
N-hydroxylation10 on reverse-turn stabilization. Backbone con-
formations can be stabilized by incorporation of many different
modified amino acids and dipeptides (see Lubell11,12 and
references therein). Another, less investigated, modification is
the aza-amino acid. In an aza-amino acid, the R-carbon is
changed to nitrogen; this definition precedes that of Mish et
al.,13 who referred to the ∆2-pyrazoline-5-carboxylic acids
obtained by cycloaddition as azaproline. Azapeptides contain
aza-amino acids, and numerous aza-analogues of biologically
active peptides have been prepared, for example, angiotensin
II,14 oxytocin,15 eledoisin,16 enkephalin,17 and luliberin (LHRH)18,19
with one analogue [D-Ser(t-Bu),6 azGly10]-LHRH, a commercial
product, Zoladex, ICI 118630, for the treatment of prostate
carcinoma. More recently, azaglycine has been studied as a
replacement for the central residue of the RGD recognition motif
of integrins.20,21 The azapeptide linkage also appears to confer
resistant to degradation by many proteolytic enzymes as
originally discovered by Oehme et al.22 and Dutta and Giles.23
The azapeptide linkage has been incorporated into inhibitors
of various enzymes, such as angiotensin converting enzyme,24
cysteine protease,25,26 renin,27 human leukocyte elastase,28 and
human rhinovirus 3C protease.29 A promising new HIV protease
inhibitor atazanavir (BMS-232632) contains a para-substituted
azaphenylalanine and is active against multiple-resistant strains.30
(7) Jorgensen, W. L.; Gao, J. J. Am. Chem. Soc. 1988, 110, 4212-4216.
(8) Cieplak, P.; Kollman, P. J. Comput. Chem. 1991, 12, 1222-1236.
(9) Chalmers, D. K.; Marshall, G. R. J. Am. Chem. Soc. 1995, 117, 5927-
5937.
(10) Takeuchi, Y.; Marshall, G. R. J. Am. Chem. Soc. 1998, 120, 5363-5372.
(11) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D.
Tetrahedron 1997, 53, 12789-12854.
(12) Halab, L.; Lubell, W. D. J. Org. Chem. 1999, 64, 3312-3321.
(13) Mish, M. R.; Guerra, F. M.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119,
8379-8380.
(14) Hess, H.-J.; Moreland, W. T.; Laubach, G. D. J. Am. Chem. Soc. 1963, 85,
4041.
(15) Niedrich, H. J. Prakt. Chem. 1972, 314, 769.
(16) Oehme, P.; Bergmann, J.; Falck, M.; Reich, J. G.; Vogt, W. E.; Niedrich,
H.; Pirrwitz, J.; Berseck, C.; Jung, F. Acta Biol. Med. Germanica 1972,
28, 109-120.
(17) Han, H.; Yoon, J.; Janda, K. D. Bioorg. Med. Chem. Lett. 1998, 8, 117-
120.
(18) Dutta, A. S.; Furr, B. J.; Giles, M. B.; Valcaccia, B. J. Med. Chem. 1978,
21, 1018-1024.
(31) Han, H.; Janda, K. D. J. Am. Chem. Soc. 1996, 118, 2539-2544.
(32) Han, H.; Yoon, J.; Janda, K. D. In Peptidomimetics Protocols; Kazmierski,
W. M., Ed.; Humana Press: Totowa, NJ, 1998; Vol. 23, Chapter 106, pp
87-102.
(19) Dutta, A. S.; Furr, B. J.; Giles, M. B.; Valcaccia, B.; Walpole, A. L.
Biochem. Biophys. Res. Commun. 1978, 81, 382-390.
(20) Gibson, C.; Goodman, S. L.; Hahn, D.; Holzemann, G.; Kessler, H. J. Org.
Chem. 1999, 64, 7388-7394.
(33) Lee, H.-J.; Ahn, I.-A.; Ro, S.; Choi, K.-H.; Choi, Y.-S.; Lee, K.-B. J. Pept.
Res. 2000, 56, 35-46.
(21) Sulyok, G. A.; Gibson, C.; Goodman, S. L.; Holzemann, G.; Wiesner, M.;
Kessler, H. J. Med. Chem. 2001, 44, 1938-1950.
(22) Oehme, P.; Katzwinkel, S.; Vogt, W. E.; Niedrich, E. Experientia 1973,
29, 947.
(34) Lecoq, A.; Boussard, G.; Marraud, M.; Aubry, A. Biopolymers 1993, 33,
1051-1059.
(35) Didierjean, C.; Del Duca, V.; Benedetti, E.; Aubry, A.; Zouikri, M.;
Marraud, M.; Boussard, G. J. Pept. Res. 1997, 50, 451-457.
(36) Zouikri, M.; Vicherat, A.; Aubry, A.; Marraud, M.; Boussard, G. J. Pept.
Res. 1998, 52, 19-26.
(23) Dutta, A. S.; Giles, M. B. J. Chem. Soc., Perkin Trans. 1 1976, 244-248.
(24) Greenlee, W. J.; Thorsett, E. D.; Springer, J. P.; Patchett, A. A. Biochem.
Biophys. Res. Commun. 1984, 122, 791-797.
(25) Magrath, J.; Abeles, R. H. J. Med. Chem. 1992, 35, 4279-4283.
(26) Xing, R.; Hanzlik, R. P. J. Med. Chem. 1998, 41, 1344-1351.
(27) Gante, J.; Krug, M.; Lauterbach, G.; Weitzel, R.; Hiller, W. J. Pept. Sci.
1995, 1, 201-206.
(37) Reynolds, C. H.; Horman, R. E. J. Am. Chem. Soc. 1996, 118, 9395-
9401.
(38) Soth, M. J.; Nowick, J. S. J. Org. Chem. 1999, 64, 276-281.
(39) Donzel, B.; Rivier, J.; Goodman, M. Biopolymers 1974, 13, 2631-2647.
(40) Montagut, M.; Lemanceau, B.; Belloco, A.-M. Biopolymers 1974, 13,
2615-2629.
(28) Powers, J. C.; Boone, R.; Carroll, D. L.; Gupton, B. F.; Kam, C. M.;
Nishino, N.; Sakamoto, M.; Tuhy, P. M. J. Biol. Chem. 1984, 259, 4288-
4294.
(41) Vicar, J.; Abillon, E.; Piriou, F.; Lintner, K.; Blaha, K.; Fromageot, P.;
Fermandjian, S. FEBS Lett. 1979, 97, 275-278.
(29) Venkatraman, S.; Kong, J.; Nimkar, S.; Wang, Q. M.; Aube, J.; Hanzlik,
R. P. Bioorg. Med. Chem. Lett. 1999, 9, 577-580.
(30) Witherell, G. Curr. Opin. InVest. Drugs 2001, 2, 340-347.
(42) Flurry, R. L., Jr.; Abdulnur, S. F.; Bopp, J. M., Jr. Biopolymers 1978, 17,
2679-2687.
9
1222 J. AM. CHEM. SOC. VOL. 125, NO. 5, 2003