Published on Web 02/11/2003
Experimental Determination of the Absolute Enantioselectivity
of an Antibody-Catalyzed Diels-Alder Reaction and
Theoretical Explorations of the Origins of Stereoselectivity
Carina E. Cannizzaro, Jon A. Ashley, K. D. Janda, and K. N. Houk*
Contribution from the Department of Chemistry and Biochemistry, UniVersity of California,
Los Angeles, California 90095-1569, and Department of Chemistry and the Skaggs Institute for
Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
Abstract: The exo and endo Diels-Alder adducts of p-methoxycarbonylbenzyl trans-1,3-butadiene-1-
carbamate and N,N-dimethylacrylamide have been synthesized, and the absolute configurations of resolved
enantiomers have been determined. On the basis of this information, the absolute enantioselectivities of
the Diels-Alder reaction catalyzed by antibodies 13G5 and 4D5 as well as other catalytic antibodies elicited
in the same immunizations have been established. The effects of different arrangements of catalytic residues
on the structure and energetics of the possible Diels-Alder transition states were modeled quantum
mechanically at the B3LYP/6-311++G**//B3LYP/6-31+G** level of theory. Flexible docking of these
enantiomeric transition states in the antibody active site followed by molecular dynamics on the resulting
complexes provided a prediction of the transition-state binding modes and an explanation of the origin of
the observed enantioselectivity of antibody 13G5.
and synthetic RNA fragments.8 There are proposals that enzyme-
Introduction
catalyzed Diels-Alder reactions may occur during biosynthesis
The Diels-Alder reaction is one of the most powerful
carbon-carbon bond-forming processes in organic chemistry.
For many synthetic applications, the value of the Diels-Alder
reaction resides in the degree of stereocontrol that can be
exercised. Extensive efforts have been focused on controlling
the diastereo- and enantioselectivity of the Diels-Alder reac-
tion.1 Some chiral Lewis acids effectively catalyze the [4 + 2]
cycloaddition reactions of various dienes and dienophiles,1 while
simple organic amine catalysts have been developed recently
to catalyze Diels-Alder reactions of different dienes with R,â-
unsaturated aldehydes.2 Several systems have also been reported
that accelerate the Diels-Alder reaction by noncovalent ca-
talysis, that is, by presenting a host cavity complementary to
the transition state. These include micelles,3 bovine serum
albumin,4 Baker’s yeast,5 cyclodextrins,6 Rebek’s tennis ball,7
of several secondary metabolites.9-12
Antibodies have been successful in catalyzing several types
of Diels-Alder reaction.13 Antibodies have attracted attention
because catalysis is not limited to metabolically important
reactions14 and might be developed for a broad range of organic
reactions.
(8) (a) Morris, K. N.; Tarasow, T. M.; Julin, C. M.; Simons, S. L.; Hilvert, D.;
Gold, L. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 13028-13032. (b) Seelig,
B.; Jaschke, A. Chem. Biol. 1999, 6, 167-176. (c) Tarasow, T. M.; Eaton,
B. E. J. Am. Chem. Soc. 2000, 122, 1015-1021.
(9) Ichihara, A.; Oikawa, H. In ComprehensiVe Natural Products Chemistry;
Sankawa, U., Ed.; Barton, D., Nakanishi, K., Met-Cohn, O., Series Eds.;
Polyketides and Other Secondary Metabolites, Vol. 1; Elsevier: New York,
1999; pp 367-408.
(10) (a) Pohnert, G. ChemBioChem 2001, 2, 873-875. (b) Auclair, K.;
Sutherland, A.; Kennedy, J.; Witter, D. J.; Van den Heever, J. P.;
Hutchinson, C. R. Vederas, J. C. J. Am. Chem. Soc. 2000, 122, 11519-
11520. (c) Hutchinson, C. R.; Kennedy, J.; Park, C.; Kendrew, S.; Auclair,
K.; Vederas, J. Antonie Van Leewenhoek 2000, 78, 287-295.
(1) Recent reviews of enantioselective Lewis acid-catalyzed Diels-Alder
reactions: (a) Togni, A.; Venanzi, L. M.; Angew. Chem., Int. Ed. Engl.
1994, 33, 497-526. (b) Maruoka, K.; Yamamoto, H. In Catalytic
Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; Chapter 9.
(c) Pindur U.; Lutz, G.; Otto, C. Chem. ReV. 1993, 93, 741-761. (d) Deloux,
L.; Srebnik, M. Chem. ReV. 1993, 93, 763-784. (e) Kagan, H. B.; Riant,
O. Chem. ReV. 1992, 92, 1007-1019.
(11) (a) Oikawa, H.; Katayama, K.; Suzuki, Y.; Ichihara, A. J. Chem. Soc.,
Chem. Commun. 1995, 1321-1322. (b) Oikawa, H.; Kobayashi, T.;
Katayama, K.; Suzuki, Y.; Ichihara, A. J. Org. Chem. 1998, 63, 8748-
8756. (c) Katayama, K.; Kobayashi, T.; Oikawa, H.; Honma, M.; Ichihara,
A. Biochim. Biophys. Acta 1998, 1384, 387-395. (d) Oikawa, H.; Suzuki,
Y.; Katayama, K.; Naya, A.; Sakano, C.; Ichihara, A. J. Chem. Soc., Perkin
Trans. 1 1999, 1225-1232.
(2) Ahrendt, K. A.; Borths, C. J.; MacMillan, W. C. J. Am. Chem. Soc. 2000,
122, 4243-4244.
(12) (a) Watanabe, K.; Mie, T.; Ichihara, A.; Oikawa, H.; Honma, M. J. Biol.
Chem. 2000, 78, 287-295. (b) For a recent review on Diels-Alderases:
Pohnert, G. ChemBioChem. 2001, 2, 873-875.
(3) Braun, R.; Schuster, F.; Sauer, J. Tetrahedron Lett. 1986, 27, 1285-1288.
(4) Colonna, S.; Manfredi, A.; Annunziata, R. Tetrahedron Lett. 1988, 29,
3347-3350.
(5) Rao, K. R.; Srinivasan, T, N.; Bhanumathi, N. Tetrahedron Lett. 1990, 31,
5959-5960.
(6) (a) Hudlicky, T.; Butora, G.; Fearnley, S. P.; Gum, A. G.; Persichini, P. J.,
III; Stabile, M. R.; Merola, J. S. J. Chem. Soc., Perkin Trans. 1 1995, 19,
2393-2398. (b) Alvira, E.; Cativiela, C.; Garcia, J. I.; Mayoral, J. A.
Tetrahedron Lett. 1995, 36, 2129-2132. (c) Sternbach, D. D.; Rossana,
D. M. J. Am. Chem. Soc. 1982, 104, 5853-5854.
(7) Kang, J.; Santamaria, J.; Hilmersson, G.; Rebek, J., Jr. J. Am. Chem. Soc.
1998 120, 7389-7390.
(13) (a) Hilvert, D.; Hill, K. W.; Nared, K. D.; Auditor, M. M. J. Am. Chem.
Soc. 1989, 111, 1, 9261-9262. (b) Braisted, A. C.; Schultz, P. G. J. Am.
Chem. Soc. 1990, 112, 7430. (c) Suckling, C. J.; Tedford, M. C.; Bence,
L. M.; Irvine, J. I.; Stimson, W. H. J. Chem. Soc., Perkin Trans. I 1993,
1925. (d) Gouverneur, V. E.; Houk, K. N.; de Pascual-Teresa, B.; Beno,
B.; Janda, K. D.; Lerner, R. A. Science 1993, 262, 204-208. (e)
Yli-Kauhaluoma, J. T.; Ashley, J. A.; Lo, C.; Tucker, L.; Wolfe, M. M.;
Janda, K. D. J. Am. Chem. Soc. 1995, 117, 7041-7047. (f) Meekel, A. P.;
Resmini, M.; Pandit, U. K. J. Chem. Soc., Chem. Commun. 1995, 571-
572. (g) Resmini, M.; Meekel, A. P.; Pandit, U. K. Pure Appl. Chem.,
1996, 68, 2025-2028.
9
10.1021/ja020879d CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 2489-2506
2489