Published on Web 11/10/2005
Light-Activated Hydrogel Formation via the Triggered Folding
and Self-Assembly of a Designed Peptide
Lisa A. Haines,† Karthikan Rajagopal,† Bulent Ozbas,‡ Daphne A. Salick,†
Darrin J. Pochan,*,‡ and Joel P. Schneider*,†
Contribution from the Department of Chemistry and Biochemistry and Materials Science and
Engineering, Delaware Biotechnology Institute, UniVersity of Delaware,
Newark, Delaware 19716-2522
Received July 14, 2005; E-mail: schneijp@udel.edu
Abstract: Photopolymerization can be used to construct materials with precise temporal and spatial
resolution. Applications such as tissue engineering, drug delivery, the fabrication of microfluidic devices
and the preparation of high-density cell arrays employ hydrogel materials that are often prepared by this
technique. Current photopolymerization strategies used to prepare hydrogels employ photoinitiators, many
of which are cytotoxic and require large macromolecular precursors that need to be functionalized with
moieties capable of undergoing radical cross-linking reactions. We have developed a simple light-activated
hydrogelation system that employs a designed peptide whose ability to self-assemble into hydrogel material
is dependent on its intramolecular folded conformational state. An iterative design strategy afforded
MAX7CNB, a photocaged peptide that, when dissolved in aqueous medium, remains unfolded and unable
to self-assemble; a 2 wt % solution of freely soluble unfolded peptide is stable to ambient light and has the
viscosity of water. Irradiation of the solution (260 < λ < 360 nm) releases the photocage and triggers
peptide folding to produce amphiphilic â-hairpins that self-assemble into viscoelastic hydrogel material.
Circular dichroic (CD) spectroscopy supports this folding and self-assembly mechanism, and oscillatory
rheology shows that the resulting hydrogel is mechanically rigid (G′ ) 1000 Pa). Laser scanning confocal
microscopy imaging of NIH 3T3 fibroblasts seeded onto the gel indicates that the gel surface is noncytotoxic,
conducive to cell adhesion, and allows cell migration. Lastly, thymidine incorporation assays show that
cells seeded onto decaged hydrogel proliferate at a rate equivalent to cells seeded onto a tissue culture-
treated polystyrene control surface.
Photopolymerization is extensively used in the fabrication
of a diverse array of materials that include industrial membranes
and coatings,1 dental adhesives,2 and optical and electronic
materials.1 The use of light to initiate polymerization is now
finding use in the construction of hydrogel materials, dilute
polymer networks capable of encapsulating a large volume of
water.3,4 Light-derived hydrogels are useful materials having
broad biomedical applications that include drug delivery,5-8
wound healing9,10 tissue engineering11-14 and construction of
high-density cell arrays.15-17 In addition, hydrogels are exten-
sively used in the fabrication of contact lenses18,19 and microf-
luidic devices serving as environmentally sensitive channel
dams.20-22 Irrespective of the final application, photopolymer-
ization allows hydrogel material to be formed with both temporal
and spatial resolution, whether in a targeted body cavity or the
strict confines of a microfluidic channel.
Typically, photopolymerized hydrogels are prepared via
radical chemistry in which a solution of macromolecular
precursor, a preformed water-soluble polymer containing reac-
† Department of Chemistry and Biochemistry.
‡ Materials Science and Engineering, Delaware Biotechnology Institute.
(1) Hughes, L. J.; Hughes, L. A. Handbook of polymer coatings for electronics,
2nd ed.; Noyes Publications: Park Ridge, NJ, 1990; pp 178-192.
(2) Moszner, N.; Salz, U. Prog. Polym. Sci. 2001, 26, 535-576.
(3) Fisher, J. P.; Dean, D.; Engel, P. S.; Mikos, A. G. Annu. ReV. Mater. Res.
2001, 31, 171-181.
(12) Elisseeff, J.; McIntosh, W.; Anseth, K.; Riley, S.; Ragan, P.; Langer, R. J.
Biomed. Mater. Res. 2000, 51, 164-171.
(13) Burdick, J. A.; Chung, C.; Jia, X. Q.; Randolph, M. A.; Langer, R.
Biomacromolecules 2005, 6, 386-391.
(14) Zhang, Z. Y.; Shum, P.; Yates, M.; Messersmith, P. B.; Thompson, D. H.
Bioconjugate Chem. 2002, 13, 640-646.
(4) Nguyen, K. T.; West, J. L. Biomaterials 2002, 23, 4307-4314.
(5) Hill-West, J. L.; Dunn, R. C.; Hubbell, J. A. J. Surl. Res. 1995, 59, 759-
763.
(6) An, Y. J.; Hubbell, J. A. J. Controlled Release 2000, 64, 205-215.
(7) Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer,
R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3104-3107.
(8) Burkoth, A. K.; Burdick, J.; Anseth, K. S. J. Biomed. Mater. Res. 2000,
51, 352-359.
(9) West, J. L.; Hubbell, J. A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 13188-
13193.
(15) Revzin, A.; Sekine, K.; Sin, A.; Tompkins, R. G.; Toner, M. Lab-on-a-
Chip 2005, 5, 30-37.
(16) Revzin, A.; Tompkins, R. G.; Toner, M. Langmuir 2003, 19, 9855-9862.
(17) Suh, K. Y.; Seong, J.; Khademhosseini, A.; Laibinis, P. E.; Langer, R.
Biomaterials 2004, 25, 557-563.
(18) Wichterle, O.; Lim, D. Nature 1960, 185, 117-118.
(19) McMahon, T. T.; Zadnik, K. Cornea 2000, 19, 730-740.
(20) Eddington, D. T.; Beebe, D. J. AdV. Drug DeliVery ReV. 2004, 56, 199-
210.
(10) Hill-West, J. L.; Chowdhury, S. M.; Sawhney, A. S.; Pathak, C. P.; Dunn,
R. C.; Hubbell, J. A. Obstet. Gynecol. (N.Y.) 1994, 83, 59-64.
(11) Bryant, S. J.; Nuttelman, C. R.; Anseth, K. S. J. Biomater. Sci.sPolym.
Ed. 2000, 11, 439-457.
(21) Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, C.;
Jo, B. H. Nature 2000, 404, 588-590.
(22) Burdick, J. A.; Khademhosseini, A.; Langer, R. Langmuir 2004, 20, 5153-
5156.
9
10.1021/ja054719o CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 17025-17029
17025