Page 5 of 7
Journal of the American Chemical Society
(4) (a) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.;
Verdugo, E.; Luis, S. V. Chiral catalysts immobilized on achiral
polymers: effect of the polymer support on the performance of the
catalyst. Chem. Soc. Rev. 2018, 47, 2722-2771. (c) García-Loma, R.;
Albéniz, A. C. Vinylic Addition Polynorbornene in Catalysis.
Asian J. Org. Chem. 2019, 8, 304-315.
(16) (a) Qin, Y.; Cheng, G.; Sundararaman, A.; Jäkle, F. Well-
Defined Boron-Containing Polymeric Lewis Acids. J. Am. Chem.
Soc. 2002, 124, 12672-12673. (b) Jäkle, F. Advances in the Synthesis
of Organoborane Polymers for Optical, Electronic, and Sensory
Applications. Chem. Rev. 2010, 110, 3985-4022. (c) Doshi, A.; Jäkle,
F., Boron-Containing Polymers. In Comprehensive Inorganic
Chemistry II Poeppelmeier, K., Ed. Elsevier: Amsterdam, 2013,
861-891.
(17) (a) Amat-Guerri, F.; Liras, M.; Luisa Carrascoso, M.; Sastre,
R. Methacrylate-tethered Analogs of the Laser Dye PM567—
Synthesis, Copolymerization with Methyl Methacrylate and
Photostability of the Copolymers¶. Photochem. Photobiol. 2003,
77, 577-584. (b) Nagai, A.; Kokado, K.; Miyake, J.; Chujo, Y. Highly
Luminescent Nanoparticles: Self-Assembly of Well-Defined Block
Copolymers by π−π Stacked BODIPY Dyes as Only a Driving
Force. Macromolecules 2009, 42, 5446-5452. (c) Sung, W. Y.; Park,
M. H.; Park, J. H.; Eo, M.; Yu, M.-S.; Do, Y.; Lee, M. H.
Yamamoto, Y. A Novel B(C6F5)3-Catalyzed Reduction of Alcohols
and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes. J. Org.
Chem. 2000, 65, 6179-6186. (b) Hoshimoto, Y.; Ogoshi, S.
Triarylborane-Catalyzed Reductive N-Alkylation of Amines: A
Perspective. ACS Catal. 2019, 9, 5439-5444.
(5) (a) Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.;
Fontaine, F.-G. Reducing CO2 to Methanol Using Frustrated
Lewis Pairs: On the Mechanism of Phosphine–Borane-Mediated
Hydroboration of CO2. J. Am. Chem. Soc. 2014, 136, 10708-10717.
(b) Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X.
Selective Reduction of CO2 to CH4 by Tandem Hydrosilylation
with Mixed Al/B Catalysts. J. Am. Chem. Soc. 2016, 138, 5321-5333.
(6) (a) Yang, W.; Gao, L.; Lu, J.; Song, Z. Chemoselective
deoxygenation of ether-substituted alcohols and carbonyl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
compounds
by
B(C6F5)3-catalyzed
reduction
with
(HMe2SiCH2)2. Chem. Commun. 2018, 54, 4834-4837. (b) Fang,
H.; Oestreich, M. Reductive Deamination with Hydrosilanes
Catalyzed by B(C6F5)3. Angew. Chem. Int. Ed. 2020, 59, 11394-11398.
(7) (a) Légaré, M. A.; Courtemanche, M. A.; Rochette, E.;
Fontaine, F. G. Metal-free catalytic C-H bond activation and
borylation of heteroarenes. Science 2015, 349, 513-516. (b) Légaré
Lavergne, J.; Jayaraman, A.; Misal Castro, L. C.; Rochette, É.;
Fontaine, F.-G. Metal-Free Borylation of Heteroarenes Using
Ambiphilic Aminoboranes: On the Importance of Sterics in
Frustrated Lewis Pair C–H Bond Activation. J. Am. Chem. Soc.
2017, 139, 14714-14723.
(8) Hong, M.; Chen, J.; Chen, E. Y.-X. Polymerization of Polar
Monomers Mediated by Main-Group Lewis Acid–Base Pairs.
Chem. Rev. 2018, 118, 10551-10616.
(9) Carden, J. L.; Dasgupta, A.; Melen, R. L. Halogenated
triarylboranes: synthesis, properties and applications in catalysis.
Chem. Soc. Rev. 2020, 49, 1706-1725.
Triarylborane-functionalized
polynorbornenes:
Direct
polymerization and signal amplification in fluoride sensing.
Polymer 2012, 53, 1857-1863. (d) Cheng, F.; Bonder, E. M.; Jäkle, F.
Electron-Deficient Triarylborane Block Copolymers: Synthesis by
Controlled Free Radical Polymerization and Application in the
Detection of Fluoride Ions. J. Am. Chem. Soc. 2013, 135, 17286-
17289. (e) Wang, M.; Nudelman, F.; Matthes, R. R.; Shaver, M. P.
Frustrated Lewis Pair Polymers as Responsive Self-Healing Gels.
J. Am. Chem. Soc. 2017, 139, 14232-14236. (f) Bouchard, N.;
Fontaine, F.-G. Alkylammoniotrifluoroborate functionalized
polystyrenes: polymeric pre-catalysts for the metal-free
borylation of heteroarenes. Dalton Trans. 2019, 48, 4846-4856.
(18) (a) Barrett, A. G. M.; Hopkins, B. T.; Köbberling, J.
ROMPgel Reagents in Parallel Synthesis. Chem. Rev. 2002, 102,
3301-3324. (b) Lu, J.; Toy, P. H. Organic Polymer Supports for
Synthesis and for Reagent and Catalyst Immobilization. Chem.
Rev. 2009, 109, 815-838.
(19) (a) Pawar, G. M.; Lalancette, R. A.; Bonder, E. M.; Sheridan,
J. B.; Jäkle, F. ROMP-Derived Pyridylborate Block Copolymers:
Self-Assembly, pH-Responsive Properties, and Metal-Containing
Nanostructures. Macromolecules 2015, 48, 6508-6515. (b) Novoa,
S.; Paquette, J. A.; Barbon, S. M.; Maar, R. R.; Gilroy, J. B. Side-
chain boron difluoride formazanate polymers via ring-opening
metathesis polymerization. J. Mater. Chem. C 2016, 4, 3987-3994.
(c) Novoa, S.; Gilroy, J. B. (Co)polymers containing boron
(10) Ma, Y.; Zhang, S.; Chang, C.-R.; Huang, Z.-Q.; Ho, J. C.; Qu,
Y. Semi-solid and solid frustrated Lewis pair catalysts. Chem. Soc.
Rev. 2018, 47, 5541-5553.
(11) (a) Szeto, K. C.; Sahyoun, W.; Merle, N.; Castelbou, J. L.;
Popoff, N.; Lefebvre, F.; Raynaud, J.; Godard, C.; Claver, C.;
Delevoye, L.; Gauvin, R. M.; Taoufik, M. Development of silica-
supported frustrated Lewis pairs: highly active transition metal-
free catalysts for the Z-selective reduction of alkynes. Catal. Sci.
Technol. 2016, 6, 882-889. (b) Zakharova, M. V.; Masoumifard, N.;
Hu, Y.; Han, J.; Kleitz, F.; Fontaine, F.-G. Designed Synthesis of
Mesoporous Solid-Supported Lewis Acid–Base Pairs and Their
CO2 Adsorption Behaviors. ACS Appl. Mater. Interfaces 2018, 10,
13199-13210.
(12) (a) Niu, Z.; Bhagya Gunatilleke, W. D. C.; Sun, Q.; Lan, P.
C.; Perman, J.; Ma, J.-G.; Cheng, Y.; Aguila, B.; Ma, S. Metal-
Organic Framework Anchored with a Lewis Pair as a New
Paradigm for Catalysis. Chem 2018, 4, 2587-2599. (b) Shyshkanov,
S.; Nguyen, T. N.; Ebrahim, F. M.; Stylianou, K. C.; Dyson, P. J. In
Situ Formation of Frustrated Lewis Pairs in a Water‐Tolerant
Metal‐Organic Framework for the Transformation of CO2.
Angew. Chem. Int. Ed. 2019, 58, 5371-5375.
(13) Chen, L.; Liu, R.; Yan, Q. Polymer Meets Frustrated Lewis
Pair: Second-Generation CO2-Responsive Nanosystem for
Sustainable CO2 Conversion. Angew. Chem. Int. Ed. 2018, 130,
9480-9484.
(14) (a) Trunk, M.; Teichert, J. F.; Thomas, A. Room-
Temperature Activation of Hydrogen by Semi-immobilized
Frustrated Lewis Pairs in Microporous Polymer Networks. J. Am.
Chem. Soc. 2017, 139, 3615-3618. (b) Willms, A.; Schumacher, H.;
Tabassum, T.; Qi, L.; Scott, S. L.; Hausoul, P. J. C.; Rose, M. Solid
Molecular Frustrated Lewis Pairs in a Polyamine Organic
Framework for the Catalytic Metal-free Hydrogenation of
Alkenes. ChemCatChem 2018, 10, 1835-1843.
difluoride
3-cyanoformazanate
complexes:
emission
enhancement via random copolymerization. Polym. Chem. 2017,
8, 5388-5395.
(20) (a) Gyömöre, Á.; Bakos, M.; Földes, T.; Pápai, I.; Domján,
A.; Soós, T. Moisture-Tolerant Frustrated Lewis Pair Catalyst for
Hydrogenation of Aldehydes and Ketones. ACS Catal. 2015, 5,
5366-5372. (b) Dorkó, É.; Kótai, B.; Földes, T.; Gyömöre, Á.; Pápai,
I.; Soós, T. Correlating electronic and catalytic properties of
frustrated Lewis pairs for imine hydrogenation. J. Organomet.
Chem. 2017, 847, 258-262.
(21) Sivaev, I. B.; Bregadze, V. I. Lewis acidity of boron
compounds. Coord. Chem. Rev. 2014, 270-271, 75-88.
(22) Hilf, S.; Kilbinger, A. F. M. Functional end groups for
polymers
prepared
using
ring-opening
metathesis
polymerization. Nat. Chem. 2009, 1, 537.
(23) (a) Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. B(C6F5)3-
Catalyzed Reductive Amination using Hydrosilanes. ACS Catal.
2016, 6, 1793-1798. (b) Dorkó, É.; Szabó, M.; Kótai, B.; Pápai, I.;
Domján, A.; Soós, T. Expanding the Boundaries of Water-Tolerant
Frustrated Lewis Pair Hydrogenation: Enhanced Back Strain in
the Lewis Acid Enables the Reductive Amination of Carbonyls.
Angew. Chem. Int. Ed. 2017, 56, 9512-9516. (c) Fasano, V.; Ingleson,
(15) (a) Bergbreiter, D. E.; Tian, J.; Hongfa, C. Using Soluble
Polymer Supports To Facilitate Homogeneous Catalysis. Chem.
Rev. 2009, 109, 530-582. (b) Altava, B.; Burguete, M. I.; Garcia-
ACS Paragon Plus Environment
5