Communication
ChemComm
Soc., 2018, 140, 2080; (h) R. Berger, K. Duff and J. L. Leighton, J. Am.
Chem. Soc., 2004, 126, 5686.
3 (a) D. G. Hall, Boronic Acids, Wiley, Weinheim, 2011; (b) D. G. Hall
and H. Lachance, Allylboration of Carbonyl Compounds, Wiley,
Hoboken, New Jersey, 2012.
´
4 (a) C. Diner and K. J. Szabo, J. Am. Chem. Soc., 2017, 139, 2; (b) H.-X.
Huo, J. R. Duvall, M.-Y. Huang and R. Hong, Org. Chem. Front., 2014,
1, 303; (c) T. R. Ramadhar and R. A. Batey, Synthesis, 2011, 1321.
5 T. Thaima, F. Zamani, C. J. T. Hyland and S. G. Pyne, Synthesis, 2018,
1461.
Fig. 3 Proposed stereoinduction model for the asymmetric allylation of
hydrazonoester 2 with BINOL ester 6.
´
6 (a) R. Alam, T. Vollgraff, L. Eriksson and K. J. Szabo, J. Am. Chem.
Soc., 2015, 137, 11262; (b) R. Alam, C. Diner, S. Jonker, L. Eriksson
In conclusion, we have shown that the catalytic asymmetric
propargyl- and allylboration of hydrazonoester 2 can be per-
formed in very high selectivity in the presence of inexpensive
BINOL. The reaction results in a-amino acids with high enantio-
selectivity and in generally good yields. The reactions can be
performed without the application of metal catalysts, which is
probably beneficial for the very high selectivity. In fact, this study
presents the first metal-free asymmetric propargyl- and allylbora-
tion of hydrazones. In this reaction densely substituted allenyl-
and allylboronic acids can be employed opening a new route to
asymmetric synthesis of sterically encumbered a-amino acids.
Thus, the present study further expands the synthetic scope of
propargyl- and allylboronic acids, which are useful species in
natural product synthesis19 and in the asymmetric synthesis of
complex molecules.6a,b
´
and K. J. Szabo, Angew. Chem., Int. Ed., 2016, 55, 14417; (c) R. J.
Morrison and A. H. Hoveyda, Angew. Chem., Int. Ed., 2018, 57, 11654;
(d) F. W. van der Mei, H. Miyamoto, D. L. Silverio and A. H. Hoveyda,
Angew. Chem., Int. Ed., 2016, 55, 4701; (e) D. L. Silverio, S. Torker,
T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner and A. H.
Hoveyda, Nature, 2013, 494, 216; ( f ) J. L. Y. Chen and V. K. Aggarwal,
Angew. Chem., Int. Ed., 2014, 53, 10992; (g) K. Yeung, R. E. Ruscoe,
J. Rae, A. P. Pulis and D. J. Procter, Angew. Chem., Int. Ed., 2016,
55, 11912; (h) Y. Jiang and S. E. Schaus, Angew. Chem., Int. Ed., 2017,
56, 1544; (i) S. Lou, P. N. Moquist and S. E. Schaus, J. Am. Chem. Soc.,
2006, 128, 12660; ( j) S. Lou, P. N. Moquist and S. E. Schaus, J. Am.
Chem. Soc., 2007, 129, 15398; (k) H. Wu, F. Haeffner and A. H.
Hoveyda, J. Am. Chem. Soc., 2014, 136, 3780; (l) N. Balasubramanian,
T. Mandal and G. R. Cook, Org. Lett., 2015, 17, 314; (m) T. R. Wu and
J. M. Chong, J. Am. Chem. Soc., 2005, 127, 3244; (n) J. M. Chong,
L. Shen and N. J. Taylor, J. Am. Chem. Soc., 2000, 122, 1822.
7 M. Fujita, T. Nagano, U. Schneider, T. Hamada, C. Ogawa and
S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 2914.
8 A. Chakrabarti, H. Konishi, M. Yamaguchi, U. Schneider and
S. Kobayashi, Angew. Chem., Int. Ed., 2010, 49, 1838.
9 R. K. Chambers, N. Chaipukdee, T. Thaima, K. Kanokmedhakul and
S. G. Pyne, Eur. J. Org. Chem., 2016, 3765.
10 (a) F. Liepouri, G. Bernasconi and N. A. Petasis, Org. Lett., 2015,
17, 1628; (b) S. Kobayashi, T. Kitanosono and M. Ueno, Synlett, 2010,
We are grateful to Mr Erik Ulriksson Ardehed for performing
some of the experiments. Support from the Swedish Research
Council is greatly appreciated. An ERASMUS stipend for G. S. is
gratefully acknowledged. H. I. thanks the Japan Society for the
Promotion of Science (JSPS) for financial support. A generous
gift of B2(OH)4 from Allychem is highly appreciated.
´
2033; (c) N. Selander, A. Kipke, S. Sebelius and K. J. Szabo, J. Am.
Chem. Soc., 2007, 129, 13723.
11 M. Raducan, R. Alam and K. J. Szabo, Angew. Chem., Int. Ed., 2012,
´
51, 13050.
12 J. Zhao, S. J. T. Jonker, D. N. Meyer, G. Schulz, C. D. Tran, L. Eriksson
and K. J. Szabo, Chem. Sci., 2018, 9, 3305.
13 (a) R. W. Hoffmann, Angew. Chem., Int. Ed., 1982, 21, 555; (b) D. A.
Evans, J. V. Nelson and T. R. Taber, Top. Stereochem., 1982, 13, 1.
Conflicts of interest
There are no conflicts to declare.
´
14 (a) R. Alam, A. Das, G. Huang, L. Eriksson, F. Himo and K. J. Szabo,
´
Chem. Sci., 2014, 5, 2732; (b) G. Huang, C. Diner, K. J. Szabo and
F. Himo, Org. Lett., 2017, 19, 5904.
15 A. Das, R. Alam, L. Eriksson and K. J. Szabo, Org. Lett., 2014, 16, 3808.
Notes and references
´
1 V. A. Soloshonok and K. Izawa, Current Frontiers in Asymmetric 16 (a) I. Marek, Y. Minko, M. Pasco, T. Mejuch, N. Gilboa, H. Chechik
Synthesis and Application of alpha-Amino Acids, ACS Symposium
Series, Oxford University Press, Oxford, 2009.
and J. P. Das, J. Am. Chem. Soc., 2014, 136, 2682; (b) K. W. Quasdorf
and L. E. Overman, Nature, 2014, 516, 181.
2 (a) K. Maruoka and T. Ooi, Chem. Rev., 2003, 103, 3013; 17 S. Krautwald, D. Sarlah, M. A. Schafroth and E. M. Carreira, Science,
(b) H. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo and T. Saito, 2013, 340, 1065.
Acc. Chem. Res., 2007, 40, 1385; (c) J. L. Acena, A. E. Sorochinsky and 18 (a) D. A. Allen, A. E. Tomaso, O. P. Priest, D. F. Hindson and J. L.
˜
V. A. Soloshonok, Synthesis, 2012, 1591; (d) U. Kazmaier, S. Maier
and F. L. Zumpe, Synlett, 2000, 1523; (e) Y. Ohfune and T. Shinada,
Hurlburt, J. Chem. Educ., 2008, 85, 698; (b) T. R. Hoye, C. S. Jeffrey
and F. Shao, Nat. Protoc., 2007, 2, 2451.
Eur. J. Org. Chem., 2005, 5127; ( f ) T. Kanayama, K. Yoshida, 19 (a) Z. Lu, M. Yang, P. Chen, X. Xiong and A. Li, Angew. Chem.,
¨
H. Miyabe and Y. Takemoto, Angew. Chem., Int. Ed., 2003, 42,
2054; (g) X. Huo, J. Zhang, J. Fu, R. He and W. Zhang, J. Am. Chem.
Int. Ed., 2014, 53, 13840; (b) E. P. Farney, S. S. Feng, F. Schafers and
S. E. Reisman, J. Am. Chem. Soc., 2018, 140, 1267.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12852--12855 | 12855