Organic Letters
Letter
Accession Codes
CCDC 1553781 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Author Contributions
Figure 3. (A) Lowest energy conformation (lowest energy conformer
on the left and higher energy conformer on the right) of
cystobactamid 920-1 (3) in the initially published 2S,3S configuration.
The calculations show that both aromatic chains stack on top of each
other, forming a loop around the hinge region. This loop is observed
in calculations for all possible combinations of absolute configuration
of the two stereocenters. (B) Magnification of the hinge region with
the two stereogenic centers and (C) observed ROE of the natural
compounds.
§T.P. and M.M. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the German Center for Infection
Research (DZIF) and the Alexander von Humboldt
Foundation (scholarship for M.D.N.). We thank A. Kanakis
flexibility compared to the benzene rings of the western part.
This observation is consistent with the work of Wilson and co-
workers, who found similarly enhanced conformational
flexibility in the terminal rings of oligobenzamides.16
Furthermore, the western peptide unit of cystobactamid 920-
1 rotates backward to form a loop around the hinge region,
such that both aromatic hemispheres are stacked on top of
each other. This loop appears to be stabilized by intra-
molecular hydrogen bonds and hydrophobic interactions
between the two chains (Figure 3). It was also possible to
observe distant through-space interactions of the two
polyaromatic segments using ROE spectroscopy. It is clear
from the ROE spectrum of the natural compound that the
amide proton at 9.58 ppm interacts with phenyl protons of the
̈
(Leibniz Universitat Hannover) for helpful support in
computational calculations.
REFERENCES
■
(1) Baumann, S.; Herrmann, J.; Raju, R.; Steinmetz, H.; Mohr, K. I.;
ttel, S.; Harmrolfs, K.; Stadler, M.; Mu
Ed. 2014, 53, 14605.
Hu
̈
̈
ller, R. Angew. Chem., Int.
(2) (a) von Eckardstein, L.; Petras, D.; Dang, T.; Cociancich, S.;
̈
Sabri, S.; Gratz, S.; Kerwat, D.; Seidel, M.; Pesic, A.; Dorrestein, P. C.;
Royer, M.; Weston, J. B.; Sussmuth, R. D. Chem. - Eur. J. 2017, 23,
̈
̈
15316. (b) Kerwat, D.; Gratz, S.; Kretz, J.; von Eckardstein, L.; Seidel,
M.; Kunert, M.; Weston, J. B.; Sussmuth, R. D. ChemMedChem 2016,
11, 1899. (c) Gratz, S.; Kerwat, D.; Kretz, J.; von Eckardstein, L.;
Semsary, S.; Seidel, M.; Kunert, M.; Weston, J. B.; Sussmuth, R. D.
ChemMedChem 2016, 11, 1499. (d) Petras, D.; Kerwat, D.; Pesic, A.;
̈
̈
̈
̀
ring vis-a-vis that resonate at 7.89 ppm as shown in Figure 3,
́
Hempel, B.; von Eckardstein, L.; Semsary, S.; Araste, J.; Marguerettaz,
M.; Royer, M.; Cociancich, S.; Sussmuth, R. D. ACS Chem. Biol. 2016,
11, 1198. (e) Vieweg, L.; Kretz, J.; Pesic, A.; Kerwat, D.; Graetz, S.;
Royer, M.; Cociancich, S.; Mainz, A.; Sussmuth, R. D. J. Am. Chem.
Soc. 2015, 137, 7608. (f) Kretz, J.; Kerwat, D.; Schubert, V.; Gratz, S.;
Pesic, A.; Semsary, S.; Cociancich, S.; Royer, M.; Sussmuth, R. D.
Angew. Chem. 2015, 127, 1992. (g) Pieretti, I.; Royer, M.; Cociancich,
S.; Pesic, A.; Petras, D.; Sussmuth, R. D. Front. Plant Sci. 2015, 6, 289.
part C. It must be noted that for geometrical reasons a ROE
between this amide proton and the protons of the adjacent
aromatic is not possible.
̈
̈
In summary, total synthesis of cystobactamid 920-1 (3a) and
its epimer (3b) allowed an unambiguous assignment of the
relative and absolute configuration of the central methox-
yaspartate unit of cystobactamid 920-1 and prompted revision
of the original constitutional assignment of cystobactamids
920-1 and 920-2. A careful structural analysis using both NMR
and computational techniques provided insight into the unique
helical backflip conformation of the cystobactamids, which
exhibit hydrogen bond interactions between the two
polyaromatic arms. This strong out-of-plane preference results
in an altered conformation of the methoxyaspartate hinge
region and has previously led to misconception in the
structural assessment of this family of natural products.
̈
̈
̈
(h) Cociancich, S.; Pesic, D.; Petras, D.; Uhlmann, S.; Kretz, J.;
Schubert, V.; Vieweg, L.; Duplan, S.; Marguerettaz, S.; Noell, J.;
Pieretti, I.; Hu
Sussmuth, R. D. Nat. Chem. Biol. 2015, 11, 195.
(3) Huttel, S.; Testolin, G.; Herrmann, J.; Planke, T.; Gille, F.;
̈
gelland, M.; Kemper, S.; Mainz, A.; Rott, P.; Royer, M.;
̈
̈
̈
̈
Moreno, M.; Stadler, M.; Bronstrup, M.; Kirschning, A.; Muller, R.
Angew. Chem., Int. Ed. 2017, 56, 12760.
̈
(4) Cheng, B.; Muller, R.; Trauner, D. Angew. Chem., Int. Ed. 2017,
56, 12755.
(5) Kim, Y. J.; Kim, H. J.; Kim, G. W.; Cho, K.; Takahashi, S.;
Koshino, H.; Kim, W. G. J. Nat. Prod. 2016, 79, 2223.
(6) Moreno, M.; Elgaher, W. A. M.; Herrmann, J.; Schlager, N.;
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
̈
S
Hamed, M. M.; Baumann, S.; Mu
Kirschning, A. Synlett 2015, 26, 1175.
̈
ller, R.; Hartmann, R. W.;
(7) Mander, L. N.; Williams, C. M. Tetrahedron 2003, 59, 1105.
(8) (a) Deng, J.; Hamada, Y.; Shiori, T. Synthesis 1998, 1998, 627.
(b) Deng, J.; Hamada, Y.; Shioiri, T. J. Am. Chem. Soc. 1995, 117,
7824.
Detailed experimental procedures and spectral data
(9) Sayyed, I.; Sudalai, A. Tetrahedron: Asymmetry 2004, 15, 3111.
D
Org. Lett. XXXX, XXX, XXX−XXX