Angewandte
Chemie
CCDC 630654 (2)and 630653 ( 3)contain the supplementary
without forming any by-products or precipitates (see the
Supporting Information).
crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
Although there are no significant distortions in the
structures of both 2 and 3, an entropy effect should push the
equilibrium toward the M3L6 structure 3 because it assembles
from fewer components.[10] Thus, the selective formation of 3
in CD3CN is explained in terms of the entropy effect.
Meanwhile, an advantage in enthalpy, which predominates
over the entropy effect, should be considered in DMSO as
solvent to account for the selective formation of 2 therein. An
implication is provided by the crystal structure of 2, in which
two DMSO molecules and two nitrate ions form a 2:2
aggregate inside the cavity (Figure 3b). We assume that this
aggregated structure exists even in solution to some extent
and templates the formation of the M4L8 structure. Indeed,
the following experiments showed the importance of the
Received: December 16, 2006
Published online: March 6, 2007
Keywords: N ligands · palladium · self-assembly · solvent effects
.
[1] a)J.-M. Lehn, Supramolecular Chemistry: Concepts and Per-
spectives, VCH, Weinheim, 1995; b)J.-M. Lehn, Chem. Eur. J.
1999, 5, 2455 – 2463.
[2] a)M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki, K.
Yamaguchi, K. Ogura, Chem. Commun. 1996, 1535 – 1536; b)O.
Mamula, F. J. Monlien, A. Porquet, G. Hopfgartner, A. E.
Merbach, A. von Zelewsky, Chem. Eur. J. 2001, 7, 533 – 539;
c)T. Bark, M. Düggeli, H. Stoeckli-Evans, A. von Zelewsky,
Angew. Chem. 2001, 113, 2924 – 2927; Angew. Chem. Int. Ed.
2001, 40, 2848 – 2851; d)A. Sautter, D. G. Schmid, G. Jung, F.
Würthner, J. Am. Chem. Soc. 2001, 123, 5424 – 5430; e)T.
Yamamoto, A. M. Arif, P. J. Stang, J. Am. Chem. Soc. 2003, 125,
[11]
cooperation of DMSO and nitrate anions. When Pd(OTf)2
was used instead of Pd(NO3)2 in [D6]DMSO, a mixture of 2
and 3 (62:38)was formed. Dilution of the [D 6]DMSO solution
of complex 2 with any other solvents (methanol, ethanol, 1,4-
dioxane, chloroform, and so on)also induced the conversion
of 2 into 3 (see the Supporting Information). Thus, both
DMSO and nitrate ions are essential to the selective
formation of 2. In the crystal structure of 3, two acetonitrile
molecules form hydrogen bonds with one water molecule at
the center of the cavity (Figure 3d). This aggregation may
enhance the selectivity for the formation of 3.
In summary, we have developed the solvato-controlled
assembly of M3L6 and M4L8 hollow complexes such that the
two complexes can be interconverted by simply adding or
removing a solvent. The cavities of both the box-shaped
compounds are efficient for molecular recognition as they are
surrounded by large hydrophobic ligands and PdII centers.
Therefore, further extension of the present work to solvent-
dependent guest recognition is a particularly interesting
subject.
ˇ ˇ
´
ˇ
12309 – 12317; f)T. Kraus, M. Buds eínsky, J. Cvacka, J.-P.
Sauvage, Angew. Chem. 2006, 118, 264 – 267; Angew. Chem.
Int. Ed. 2006, 45, 258 – 261.
[3] a)J.-M. Senegas, S. Koeller, G. Bernardinelli, C. Piguet, Chem.
Commun. 2005, 2235 – 2237; b)C. Provent, E. Rivara-Minten, S.
Hewage, G. Brunner, A. F. Williams, Chem. Eur. J. 1999, 5,
3487 – 3494.
[4] a)B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. Dupont-
Gervais, A. Van Dorsselaer, B. Kneisel, D. Fenske, J. Am. Chem.
Soc. 1997, 119, 10956 – 10962; b)G. Ma, Y. S. Jung, D. S. Chung,
J.-I. Hong, Tetrahedron Lett. 1999, 40, 531 – 534; c)M.
Schweiger, S. R. Seidel, A. M. Arif, P. J. Stang, Inorg. Chem.
2002, 41, 2556 – 2559; d)C. S. Campos-Fernꢀndez, B. L. Schottel,
H. T. Chifotides, J. K. Bera, J. Bacsa, J. M. Koomen, D. H.
Russell, K. R. Dunbar, J. Am. Chem. Soc. 2005, 127, 12909 –
12923; e)P. A. Brady, R. P. Bonar-Law, S. J. Rowan, C. J.
Suckling, J. K. M. Sanders, Chem. Commun. 1996, 319 – 320;
f)P. A. Brady, J. K. M. Sanders, J. Chem. Soc. Perkin Trans. 1
1997, 3237 – 3253.
[5] a)S. Hiraoka, M. Fujita, J. Am. Chem. Soc. 1999, 121, 10239 –
10240; b)M. Scherer, D. L. Caulder, D. W. Johnson, K. N.
Raymond, Angew. Chem. 1999, 111, 1689 – 1694; Angew. Chem.
Int. Ed. 1999, 38, 1587 – 1592; c)Y. Yamanoi, Y. Sakamoto, T.
Kusukawa, M. Fujita, S. Sakamoto, K. Yamaguchi, J. Am. Chem.
Soc. 2001, 123, 980 – 981; d)M. Albrecht, I. Janser, J. Runsink, G.
Raabe, P. Weis, R. Frꢁhlich, Angew. Chem. 2004, 116, 6832 –
6836; Angew. Chem. Int. Ed. 2004, 43, 6662 – 6666; e)D. K.
Chand, K. Biradha, M. Kawano, S. Sakamoto, K. Yamaguchi, M.
Fujita, Chem. Asian J. 2006, 1, 82 – 90; f)R. T. S. Lam, A.
Belenguer, S. L. Roberts, C. Naumann, T. Jarrosson, S. Otto,
J. K. M. Sanders, Science 2005, 308, 667 – 669.
[6] a)M. Fujita, F. Ibukuro, H. Hagihara, K. Ogura, Nature 1994,
367, 720 – 723; b)S. J. Park, D. M. Shin, S. Sakamoto, K.
Yamaguchi, Y. K. Chung, M. S. Lah, J.-I. Hong, Chem. Eur. J.
2005, 11, 235 – 241; c)L. Pirondini, A. G. Stendardo, S. Geremia,
M. Campagnolo, P. Samorꢂ, J. P. Rabe, R. Fokkens, E. Dalcanale,
Angew. Chem. 2003, 115, 1422 – 1425; Angew. Chem. Int. Ed.
2003, 42, 1384 – 1387; d)S. A. Schuetz, V. W. Day, A. L. Rhein-
gold, J. A. Belot, Dalton Trans. 2003, 4303 – 4306; e)O. Mamula,
M. Lama, H. Stoeckli-Evans, S. Shova, Angew. Chem. 2006, 118,
5062 – 5066; Angew. Chem. Int. Ed. 2006, 45, 4940 – 4944;
f)P. N. W. Baxter, R. G. Khoury, J.-M. Lehn, G. Baum, D.
Fenske, Chem. Eur. J. 2000, 6, 4140 – 4148; g)C. A. Schalley, T.
Experimental Section
Crystal data for 2: C188H96N23O56S14Pd4, Mr = 4447.32, pale yellow
block (0.28 0.26 0.22 mm3), monoclinic, space group P21/c, a =
21.232(3), b = 15.524(2), c = 35.481(5), b = 97.139(2)8, V=
11604(3) 3, T= 80 K, Z = 2, 1calcd = 1.273, 19815 unique reflections
out of 28706 with I > 2s(I), The structure was solved by direct
methods (SHELXL-97)and refined by full-matrix least-squares
methods on F2 with 1569 parameters, 1.63 < q < 28.898, R1-
(I>2s(I)) = 0.0877, wR2 = 0.2790, GOF = 1.050, max/min residual
density 1.652/À1.479 eÀ3. Inside of the cavity, DMSO molecules
and water molecules are disordered with occupancies of 0.58 and 0.42,
respectively.
Crystal data for 3: C138H108N22O31.5Pd3, Mr = 2891.67, pale yellow
3
¯
needle (0.40 0.30 0.05 mm ), trigonal, space group P1, a = b =
19.841(5), c = 27.850(12), V= 9494(6) 3, T= 90 K, Z = 2, 1calcd
=
1.014, 4735 unique reflections out of 17705 with I > 2s(I). The
structure was solved by direct methods (SHELXL-97)and refined by
full-matrix least-squares methods on F2 with 594 parameters, 2.18 <
q < 30.068, R1(I>2s(I)) = 0.1227, wR2 = 0.3963, GOF = 0.899, max/
min residual density 0.856/À0.916 eÀ3. Several solvent molecules
and nitrate anions are disordered. The bond lengths of severely
disordered molecules were chemically restrained.
Angew. Chem. Int. Ed. 2007, 46, 2819 –2822
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2821