Organic Letters
Letter
(8) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Transition
metal-catalyzed ketone-directed or mediated C-H functionalization.
Chem. Soc. Rev. 2015, 44 (21), 7764−7786.
(9) Chen, Y. Q.; Wang, Z.; Wu, Y.; Wisniewski, S. R.; Qiao, J. X.;
Ewing, W. R.; Eastgate, M. D.; Yu, J. Q. Overcoming the Limitations of
gamma, and delta-C-H Arylation of Amines through Ligand Develop-
ment. J. Am. Chem. Soc. 2018, 140 (51), 17884−17894.
(10) Shao, Q.; Wu, Q. F.; He, J.; Yu, J. Q. Enantioselective gamma-
C(sp3)−H Activation of Alkyl Amines via Pd(II)/Pd(0) Catalysis. J.
Am. Chem. Soc. 2018, 140 (16), 5322−5325.
(11) Park, H.; Chekshin, N.; Shen, P.-X.; Yu, J.-Q. Ligand-Enabled,
Palladium-Catalyzed β-C(sp3)−H Arylation of Weinreb Amides. ACS
Catal. 2018, 8 (10), 9292−9297.
(12) Zhu, R. Y.; Li, Z. Q.; Park, H. S.; Senanayake, C. H.; Yu, J. Q.
Ligand-Enabled gamma- C(sp3)−H Activation of Ketones. J. Am.
Chem. Soc. 2018, 140 (10), 3564−3568.
(13) Park, H.; Verma, P.; Hong, K.; Yu, J. Q. Controlling Pd(IV)
reductive elimination pathways enables Pd(II)-catalysed enantioselec-
tive C(sp3)−H fluorination. Nat. Chem. 2018, 10, 755−762.
(14) Shi, H.; Herron, A. N.; Shao, Y.; Shao, Q.; Yu, J.-Q.
Enantioselective remote meta-C−H arylation and alkylation via a
chiral transient mediator. Nature 2018, 558 (7711), 581−585.
(15) Zhang, Z.; Tanaka, K.; Yu, J. Q. Remote site-selective C-H
activation directed by a catalytic bifunctional template. Nature 2017,
543 (7646), 538−542.
In summary, 3-amino-N-isopropylpropionamide as a new
TDG is effectively involved in Pd-catalyzed arylation of aliphatic
aldehydes and ketones. The TDG is found effective for the
activation of the C−H bond of the unactivated methyl group and
the cyclic methylene group. This reaction showed good
substrate compatibility and regioselectivity. The results
indicated that 3-amino-N-isopropylpropionamide was more
beneficial to the β-arylation of aliphatic aldehydes than other
TDGs under relatively mild conditions. The β-amino amide
produced results by the [5,6]-bicyclopalladium intermediate
between Pd and TDG better than those of glycinamide. This
research broadens the range of applications for TDGs. The same
TDG can be applied to activate the inert C−H bond of aliphatic
aldehydes and ketones simultaneously. At present, our
laboratory attempts to find a new amide-like DG with better
universality based on previous research, which can make it
suitable for C−H activation of all types of aldehydes and
ketones.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(16) Dyachenko, V. D.; Karpov, E. N. Aliphatic aldehydes in the
synthesis of carbo- and heterocycles: Part II. Synthesis of six- and seven-
membered rings, bicyclic compounds, and macrocycles. Russ. J. Org.
Chem. 2011, 47 (1), 1−29.
(17) Kim, H. Y.; Walsh, P. J. Efficient approaches to the stereoselective
synthesis of cyclopropyl alcohols. Acc. Chem. Res. 2012, 45 (9), 1533−
1547.
Experimental details, spectral and analytical data for all
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(18) Shang, M.; Sun, S. Z.; Dai, H. X.; Yu, J. Q. Cu(II)-mediated C-H
amidation and amination of arenes: exceptional compatibility with
heterocycles. J. Am. Chem. Soc. 2014, 136 (9), 3354−3357.
(19) Cheng, G. J.; Yang, Y. F.; Liu, P.; Chen, P.; Sun, T. Y.; Li, G.;
Zhang, X.; Houk, K. N.; Yu, J. Q.; Wu, Y. D. Role of N-acyl amino acid
ligands in Pd(II)-catalyzed remote C-H activation of tethered arenes. J.
Am. Chem. Soc. 2014, 136 (3), 894−897.
Notes
The authors declare no competing financial interest.
(20) Mukaiyama, T. Explorations into new reaction chemistry. Angew.
Chem., Int. Ed. 2004, 43 (42), 5590−5614.
ACKNOWLEDGMENTS
■
(21) Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby, P. O.; Madsen, R.
The mechanism for the rhodium-catalyzed decarbonylation of
aldehydes: a combined experimental and theoretical study. J. Am.
Chem. Soc. 2008, 130 (15), 5206−5215.
This work was supported by the Program for CAS “Light of West
China”. The authors gratefully acknowledge the Program for
Changjiang Scholars and Innovative Research Team in
University (IRT17R94).
(22) Murphy, S. K.; Dong, V. M. Enantioselective hydroacylation of
olefins with rhodium catalysts. Chem. Commun. 2014, 50 (89), 13645−
13649.
REFERENCES
■
(23) Willis, M. C. Transition metal catalyzed alkene and alkyne
hydroacylation. Chem. Rev. 2010, 110 (2), 725−748.
(1) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C-H bond
functionalization: emerging synthetic tools for natural products and
pharmaceuticals. Angew. Chem., Int. Ed. 2012, 51 (36), 8960−9009.
(2) Wang, H.; Li, G.; Engle, K. M.; Yu, J. Q.; Davies, H. M. Sequential
C-H functionalization reactions for the enantioselective synthesis of
highly functionalized 2,3-dihydrobenzofurans. J. Am. Chem. Soc. 2013,
135 (18), 6774−6777.
(24) He, J.; Takise, R.; Fu, H.; Yu, J. Q. Ligand-enabled cross-coupling
of C(sp3)−H bonds with arylsilanes. J. Am. Chem. Soc. 2015, 137 (14),
4618−4621.
(25) Desai, L. V.; Hull, K. L.; Sanford, M. S. Palladium-catalyzed
oxygenation of unactivated C(sp3)−H bonds. J. Am. Chem. Soc. 2004,
126 (31), 9542−9543.
(3) Lu, P.; Gu, Z.; Zakarian, A. Total synthesis of maoecrystal V: early-
stage C-H functionalization and lactone assembly by radical cyclization.
J. Am. Chem. Soc. 2013, 135 (39), 14552−14555.
(26) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-metal-
catalyzed direct arylation of (hetero)arenes by C-H bond cleavage.
Angew. Chem., Int. Ed. 2009, 48 (52), 9792−9826.
(4) Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C-H
Activation. ACS Catal. 2016, 6 (2), 498−525.
(27) Tredwell, M. J.; Gulias, M.; Gaunt Bremeyer, N.; Johansson, C.
C.; Collins, B. S.; Gaunt, M. J. Palladium(II)-catalyzed C-H bond
arylation of electron-deficient arenes at room temperature. Angew.
Chem., Int. Ed. 2011, 50 (5), 1076−1079.
(5) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthenium(II)-
catalyzed C-H bond activation and functionalization. Chem. Rev. 2012,
112 (11), 5879−5918.
(28) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q.
Functionalization of C(sp3)−H bonds using a transient directing
group. Science 2016, 351 (6270), 252−256.
(29) Kim, J. H.; Gressies, S.; Glorius, F. Cooperative Lewis Acid/
Cp*Co(III) Catalyzed C-H Bond Activation for the Synthesis of
Isoquinolin-3-ones. Angew. Chem., Int. Ed. 2016, 55 (18), 5577−5581.
(6) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-catalyzed C-
C bond formation via heteroatom-directed C-H bond activation. Chem.
Rev. 2010, 110 (2), 624−655.
(7) Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed
C-H functionalization reactions. Chem. Rev. 2010, 110 (2), 1147−
1169.
D
Org. Lett. XXXX, XXX, XXX−XXX