J. R. Heys and C. S. Elmore
1H NMR (500MHz, D6-acetone) d ppm 7.79 (t, J = 7.8 Hz, 1H), 7.97 pairs. The acceleration of C2 labeling by the more powerful
(d, J = 7.6 Hz, 1H), 8.26 (s, 1H), 8.28 (d, J = 7.9 Hz, 1H). 19F NMR substituents may be exploitable for regioselective labeling,
(471 MHz, acetone) d ppm 25.48 (s, 4.2F), 25.54 (s, 1F), 114.13 (s, especially if the progress of reactions is monitored (a
5.9F). After heating under N2: 1H NMR (500MHz, D6-acetone) noninvasive method for real-time monitoring of HDE reactions
d ppm 6.89 (d, J = 7.9 Hz, 1.8H), 7.32 (s, 1.8H), 7.39 (d, J = 7.6Hz, is available for certain substrates).20 No definite mechanistic
2.74H), 7.70 (d, J = 11.6 Hz, 0.3H), 7.79 (t, J = 7.6Hz, 1H), 7.96 (d, explanation is yet available to account for the positive influence
J = 7.9 Hz, 1H), 8.26 (s, 1H), 8.28 (s, 1H). After bubbling H2 through of some C3 substituents on the rate of C2 hydrogen isotope
1
the solution: H NMR (500 MHz, D6-acetone) d ppm 7.39 (br. s., exchange catalyzed by organoiridium complexes. Application of
0.5H), 7.56 (d, J = 12.3 Hz, 0.19H), 7.66 (t, J = 7.6Hz, 1H), 7.83 (d, isotope studies, such as those presented here, may be useful in
J = 7.6 Hz, 1H), 8.13 (br. s., 1H), 8.15 (d, J = 7.9 Hz, 1H). There was investigations into these mechanistic questions.
no change to the 19F NMRs of the later two samples.
Reaction of [(cod)IrfP(C6D5)3g2]BF4 with (3-fluorophenyl)etha-
none: The reaction was run as described for the reaction of (3-
chlorophenyl)ethanone with 3 using 11.4 mg (11.9 mmol) of 3
1
and 1.49 mg (10.8 mmol) of (3-fluorophenyl)ethanone. H NMR
References
(500 MHz, D6-acetone) d ppm 7.40 (td, J = 8.2, 2.3 Hz, 1H), 7.56
(m, 1H), 7.68 (dd, J = 9.8, 1.5 Hz, 1H), 7.84 (d, J = 7.0 Hz, 1H). 19F
NMR (471 MHz, acetone) d ppm 25.5 (s, 1.6F), 25.6 (s, 7.3F), 63.1
[1] R. H. Crabtree, E. M. Holt, M. Lavin, S. M. Morehouse, Inorg. Chem.
1984, 24, 1986–1992.
[2] J. R. Heys, Chem. Commun. 1992, 680–681; J. R. Heys, A. Y. L. Shu,
S. G. Senderoff, N. M. Phillips, J. Labelled Compd. Radiopharm.
1993, 33, 431–438.
[3] A. Y. L. Shu, J. R. Heys, J. Labelled Compd. Radiopharm. 1994, 34,
587–596.
[4] D. Hesk, P. R. Das, B. Evans, J. Labelled Compd. Radiopharm. 1995,
36, 497–502.
1
(s, 1.3F), 63.4 (s, 1F). After heating under N2: H NMR (500 MHz,
D6-acetone) d ppm 6.52 (t, J = 7.8 Hz, 1.24H), 6.58 (m, 0.17H), 6.84
(dt, J = 7.6, 4.9 Hz, 1.23H), 6.89 (m, 0.12H), 7.08 (d, J = 7.6 Hz,
1.28H), 7.15 (m, 0.14H), 7.23 (m, 0.07H), 7.40 (t, J = 8.4 Hz, 1H),
7.58 (m, 1H), 7.68 (d, J = 9.8 Hz, 0.66H), 7.84 (d, J = 7.6 Hz, 1H). 19
F
[5] See for an overview and references J. R. Heys, J. Labelled Compd.
Radiopharm. 2007, 50, 770–778.
NMR (471 MHz, acetone) d ppm 25.54, (s, 22.6F), 25.59 (s, 6.7F),
63.1 (s, 1.4F), 63.4 (s, 3.1F), 84.6 (s, 1F), 84.7 (br. s., 4.2F). After H2
[6] J. R. Heys, A. Y. L. Shu, L. E. Nice, in Synthesis and Applications of
Isotopically Labelled Compounds 1994, Proceedings of the 5th
International Symposium, Strasbourg, France (Eds.: J. Allen,
R. Voges), Wiley, New York, 1995, pp. 175–180; A. Y. L. Shu,
W. Chen, J. R. Heys, J. Organomet. Chem. 1996, 524, 87–93;
W. Chen, K. T. Garnes, S. H. Levinson, D. Saunders, S. G. Senderoff,
A. Y. L. Shu, A. J. Villani, J. R. Heys, J. Labelled Compd. Radiopharm.
1997, 39, 291–298.
[7] G. J. Ellames, J. S. Gibson, J. M. Herbert, A. H. McNeill, Tetrahedron
2001, 57, 9487–9497; J. M. Herbert, J. Labelled Compd. Radiopharm.
2005, 48, 317–322.
[8] P. W. C. Cross, G. J. Ellames, J. S. Gibson, J. M. Herbert, W. J. Kerr,
A. H. McNeill, T. W. Mathers, Tetrahedron 2003, 59, 3349–3358;
G. J. Ellames, J. S. Gibson, F. M. Herbert, W. J. Kerr, A. H. McNeill,
J. Labelled Compd. Radiopharm. 2004, 47, 1–10.
1
bubbling: H NMR (500 MHz, D6-acetone) d ppm 7.39 (m, 0.5H),
7.57 (d, J = 11.6 Hz, 0.2H), 7.66 (t, J = 7.6 Hz, 1H), 7.83 (d, J = 7.6 Hz,
1H), 8.13 (s, 1H), 8.15 (d, J = 7.9 Hz, 1H).
Reaction of [(cod)IrfP(C6D5)3g2]BF4 with (3-trifluromethoxyphe-
nyl)ethanone: The reaction was run as described for the reaction
of (3-chlorophenyl)ethanone with 3 using 6.37 mg (6.67 mmol)
of 3 and 1.32 mg (6.44 mmol) of (3-trifluromethoxyphenyl)etha-
none 1H NMR (500 MHz, D6-acetone) d ppm 7.59 (d, J = 7.3 Hz,
1H), 7.68 (t, J = 7.9 Hz, 1H), 7.86 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H). 19
F
NMR (471 MHz, acetone) d ppm 25.5 (s, 4F), 25.6 (s, 1F), 118.8 (s,
5F). After heating under N2: 1H NMR (500 MHz, D6-acetone)
d ppm 6.68 (d, 3.3H), 6.73 (d, J = 7.3 Hz, 2.6H), 6.95 (t, J = 7.8 Hz,
2.3H), 7.04 (s, 2.2H), 7.15 (d, J = 7.9 Hz, 1.7H), 7.26 (d, J = 8.5 Hz,
3.3H), 7.35 (t, J = 5.3 Hz, 2H), 7.38 (t, J = 5.3 Hz, 2H), 7.60 (s, 1.4H),
7.70 (m, 3.9H), 7.86 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H). 19F NMR
(471 MHz, acetone) d ppm 25.45 (s, 5.4F), 25.5 (s, 1.1F), 118.6
(s, 1.8F), 118.8 (s, 3.5F), 121.3 (s, 1F). After H2 bubbling: 1H
NMR (500 MHz, D6-acetone) d ppm 7.52 (t, J = 5.3 Hz, 1H), 7.59
(d, J = 7.9 Hz, 1H), 7.70 (m, 3.38H), 7.86 (s, 1H), 8.03 (d, J = 7.6 Hz,
1H). 19F NMR (471 MHz, acetone) d ppm 25.5 (s, 4F), 25.6 (s, 1F),
118.8 (s, 5F).
[9] X. Li, P. Chen, J. W. Faller, R. H. Crabtree, Organometal 2005, 24,
4810–4815.
[10] R. J. McKinney, G. Firestein, H. D. Kaesz, Inorg. Chem. 1975, 14,
2057–2061; J. M. Cooney, L. H. P. Gommans, L. Main,
B. K. Nicholson, J. Organomet. Chem. 1988, 349, 197–207;
L. S. Liebeskind, J. R. Gasdaska, J. S. McCallum, J. Org. Chem.
1989, 54, 669–677; M. Pfeffer, E. P. Urriolabeitia, J. Fischer, Inorg.
Chem. 1995, 34, 643–650; P. W. R. Harris, P. D. Woodgate,
J. Organomet. Chem. 1996, 506, 339–341; Y.-G. Lim, J.-S. Han,
B. T. Koo, J.-B. Kang, J. Mol. Catal. A 2004, 209, 41–49; D. Kalyani,
M. S. Sanford, Org. Lett. 2005, 7, 4149–4152.
[11] M. Sonoda, F. Kakiuchi, N. Chatani, S. Murai, J. Organomet. Chem.
1995, 504, 151–152; M. Sonoda, F. Kakiuchi, N. Chatani, S. Murai,
Bull. Chem. Soc. Jpn. 1997, 70, 3117–3128; Y. Ie, N. Chatani, T. Ogo,
D. R. Marshall, T. Fukuyama, F. Kakiuchi, S. Murai, J. Org. Chem.
2000, 65, 1475–1488; F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002,
36, 825–834; F. Kakiuchi, S. Murai, Activation of C–H bonds:
catalytic reactions in Activation of Unreactive Bonds and Organic
Synthesis (Ed.: S. Murai), Springer, Berlin, 1999, pp. 47–80
Conclusions
Our studies show unambiguously the effects of a variety of
meta-substituents on the relative rates of deuterium exchange
into the nonequivalent ortho-positions of three model substrate
classes, catalyzed by two different organoiridium complexes [12] K. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki,
M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004,
commonly used in HDE. The meta-substituent effects are nearly
126, 14342–14343; K. Orito, M. Miyazawa, T. Nakamura, A. Horibata,
the same (where tested) for both organoiridium complexes. The
various meta-substituents produce similar effects, relative to one
H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, T. Yamazaki,
M. Tokuda, J. Org. Chem. 2006, 71, 5951–5958.
another, in all three substrate classes. Substituents lacking
electron lone pairs strongly retard C2 labeling relative to that at
C6, probably through steric blockade. In contrast, all substitu-
ents possessing electron lone pairs are associated either with
faster C2 labeling or C2/C6 labeling rate ratios less unfavorable
than those associated with substituents lacking electron lone
[13] E. Ben-Ari, M. Gandelman, H. Rozenberg, L. J. W. Shimon,
D. Milstein, J. Am. Chem. Soc. 2003, 125, 4714–4715; E. Ben-Ari,
R. Cohen, M. Gandelman, L. J. W. Shimon, J. M. L. Martin,
D. Milstein, Organometal 2006, 25, 3190–3210.
[14] M. J. Burk, R. H. Crabtree, E. M. Holt, Organometal 1984, 3,
638–640; M. J. Burk, R. H. Crabtree, E. M. Holt, J. Organomet. Chem.
1988, 341, 495–509.
J. Label Compd. Radiopharm 2009, 52 189–200
Copyright r 2009 John Wiley & Sons, Ltd.