1928
Z. Wróbel
LETTER
umn chromatography 2a was isolated in 68% yield.7 Oth-
er N-alkyl-N-(3-nitroaryl) benzylsulfonamides were
found to undergo the same transformations (Equation,Ta-
ble).
References
(1) (a) Wróbel, Z. Tetrahedron Lett. 2000, 41, 7365.
(b) Wróbel, Z. Tetrahedron 2001, 57, 7899.
(2) Wróbel, Z. Tetrahedron Lett. 2001, 42, 5537.
(3) Wróbel, Z. Synlett 2001, 1415.
(4) For example: (a) Delfourne, E.; Roubin, C.; Bastide, J. J.
Org. Chem. 2000, 65, 5476. (b) Nakahara, S.; Matsui, J.;
Kubo, A. Tetrahedron Lett. 1998, 39, 5521. (c) Kitahara,
Y.; Tamura, F.; Nishimura, M.; Kubo, A. Tetrahedron 1998,
54, 8421. (d) Ozturk, T.; Mc Killop, A. Can. J. Chem. 2000,
78, 1158.
Equation
(5) Typical conditions: (a) : Sulfonylation: 3-Nitroaniline (1.38
g, 10 mmol); benzylsulfonyl chloride (2.30 g, 12 mmol); dry
pyridine (20 mL); 0 °C to r.t.; 6 h; 75%; (b):Methylationto
1a: (1.17g, 4 mmol); K2CO3 (2.7 g, 20 mmol); MeI (excess,
1 mL); dry DMF (10 mL); r.t.; 3 h; 90%.
(6) Typical procedure: 1a (306 mg, 1 mmol); t-BuMe2SiCl (452
mg, 3 mmol); DBU (746 L, 5 mmol); dry MeCN (20 mL);
8 days at r.t.; 130 mg of 7a (85%); mp 191–192 °C (PhCH3-
hexane); H (200 MHz, CDCl3): –0.12 (s, 6 H), 0.78 (s, 9 H),
3.16 (s, 3 H), 5.51 (d, J = 6.6 Hz, 1 H), 6.45 (dd, J = 10.0, 6.6
Hz, 1 H), 6.69 (dd, J = 10.0, 0.6 Hz, 1 H), 7.39-7.50 (m, 3
H), 7.56-7.66 (m, 2 H); m/z (EI, int.%): 403 (27.9), 402
(100.0), 401 (11.8), 346 (10.9), 345 (46.4), 297 (8.5), 282
(21.6), 281 (87.6), 280 (22.1), 272 (23.6), 271 (43.9); UV
(CHCl3): 465.8 nm.
(7) Typical procedure: 7a (50 mg, 0.125 mmol); t-BuMe2SiCl
(19 mg, 0.125 mmol), Et3N (20 L, 0.130 mmol); fluorenone
(20 mg); dry MeCN (25 mL); 100 W bulb; 2 days; yield: 23
mg of 2a (68%): H (500 MHz, DMSO-d6): 3.44 (s,3 H),
7.08 (d, J = 7.2 Hz, 1 H), 7.76 (d, J = 9.0 Hz, 1 H,), 7.94 (dd,
J = 9.0, 7.2 Hz, 1 H), 7.96-8.00 (m, 1 H), 8.10 (ddd, J = 8.4,
6.8, 1.3 Hz, 1 H), 8.33 (app d, J = 8.4 Hz, 1 H), 8.44 (d, J =
8.8 Hz, 1 H); c (125 MHz, DMSO-d6): 150.1 (Cq), 146.0
(Cq), 136.5 (Cq), 134.3, 132.8 (Cq), 131.9, 130.6, 130.4,
122.1, 119.3, 117.4 (Cq), 112.5 (Cq), 102.9, 27.0 (CH3);
m/z (EI, int.%): 271 (9.6), 270 (100.0), 223 (7.55), 222
(41.7), 221 (11.0), 206 (8.4), 205 (42.4), 179 (27.0), 178
(19.9); HRMS: calcd. for C14H10O2N2S [270.0463], found:
270.0458.
Table Conversion of 1 to 7 and Photocyclization of 7 to 2
1
a
b
c
X
R
7
a
–
–
d
e
Yield[%]a
88
2
a
b
c
Yield[%]a
68
H
Me
allyl
Bn
b
H
–
22c
b
H
–
25c
d
e
Cl
Cl
Me
allyl
82
d
e
88d
b
–
23d
a Isolated yield.
b Conversion to 2 performed on crude mixture resulted from silylation
of 1 after addition of t-BuMe2SiCl and fluorenone.
c Yield after two steps based on 1.
d 150 W bulb.
In the cases where 7 was difficult to separate, the cycliza-
tion step was conducted on the crude silylation mixture af-
ter addition of more t-BuMe2SiCl and fluorenone.
The nature of cyclization remained unclear so far. It seems
that the photochemical conrotation might be favoured
over the thermal disrotation process for steric reasons.
Addition of a base and silylating agent would facilitate
elimination of t-butyldimethylsilanol from the cyclized
intermediate 8 to form aromatized system.
(8) Following procedure:3 2a (68 mg, 0.25 mmol), methyl
acetoacetate (0.56 mL, 5 mmol) and K2CO3 (345 mg, 2.5
mmol) were stirred in DMF (5 mL) for 20 h at r.t. After
evaporation of the solvent and the excess of methyl
acetoacetate the residue was chromatographed on silica gel
with CH2Cl2–MeOH (1:5) mixture as eluent to give 3 as red
crystals (35 mg; 45%): H (500 MHz, DMSO-d6): 2.45 (s, 3
H), 3.49 (s, 3 H), 3.85 (s, 3 H), 6.65 (d, J = 7.8 Hz, 1 H, H-
8), 7.23 (ddd, J = 8.7, 6.6, 1.3 Hz, 1 H, H-9), 7.32 (dd, J =
8.6, 0.7 Hz, 1 H, H-4), 7.56 (app d, J = 8.6 Hz, 1 H, H-11),
7.59 (ddd, J = 8.6, 6.6, 1.3 Hz, 1 H, H-10), 7.63 (t, J = 8.6
Hz, 1 H, H-5), 7.71 (dd, J = 8.6, 0.7 Hz, 1 H, H-6); m/z (EI,
int.%): 305 (21,6), 304 (100.0), 290 (3.7), 289 (15.7), 274
(10.3), 273 (5.47), 258 (3.1), 248 (6.3), 245 (10.1), 229
(11.3); HRMS: calcd. for C19H16O2N2 [304.1212], found:
304.1205.
As an illustration of the versatility of dioxoisothiazo-
lo[5,4,3-k,l]acridines as intermediates in synthesis of py-
ridoacridine systems 2a was converted to 3a (X = H, R =
R’ = Me, Y = CO2Me)8 on treatment with methyl aceto-
acetate in K2CO3/DMF system.3
Acknowledgement
This study was funded by the State Committee of Scientific Rese-
arch Grant No. PBZ 6.01.
Synlett 2001, No. 12, 1927–1928 ISSN 0936-5214 © Thieme Stuttgart · New York