10.1002/anie.201903392
Angewandte Chemie International Edition
COMMUNICATION
Lang, P. Maire, A. Togni, Eur. J. Inorg. Chem. 2006, 1397-1412; c) J.-F.
Paquin, Synlett 2011, 289-293; d) D. Watanabe, M. Koura, A. Saito, M.
Okada, A. Sato, T. Taguchi, J. Fluorine Chem. 2011, 132, 327-338; e) E.
Benedetto, M. Keita, M. Tredwell, C. Hollingworth, J. M. Brown, V.
Gouverneur, Organometallics 2012, 31, 1408-1416; f) M. Bergeron, D.
Guyader, J.-F. Paquin, Org. Lett. 2012, 14, 5888-5891.
[8] For synthesis of MBH fluorides please see: a) L. Bernardi, B. F. Bonini, M.
Comes-Franchini, M. Fochi, M. Folegatti, S. Grilli, A. Mazzanti, A. Ricci,
Tetrahedron: Asymmetry 2004, 15, 245-250; b) M. Baumann, I. R.
Baxendale, S. V. Ley, Synlett 2008, 2111-2114. Further details on
synthesis of allylic MBH fluorides in ref. 14
[9] a) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115, 683-730; b) P.
Patschinski, C. Zhang, H. Zipse, J. Org. Chem. 2014, 79, 8348-8357; c)
M. Marin-Luna, P. Patschinski, H. Zipse, Chem. Eur. J. 2018, 24, 15052-
15058; d) M. Marin-Luna, B. Poelloth, F. Zott, H. Zipse, Chem. Sci. 2018,
9, 6509-6515; e) C. P. Johnston, T. H. West, R. E. Dooley, M. Reid, A. B.
Jones, E. J. King, A. G. Leach, G. C. Lloyd-Jones, J. Am. Chem. Soc.
2018, 140, 11112-11124.
[10] Recent reviews on modification of MBH derivatives: a) F.-J. Wang, Y. Wei,
M. Shi, RSC Catal. Ser. 2011, 8, 325-484; b) P. Xie, Y. Huang, Org.
Biomol. Chem. 2015, 13, 8578-8595; c) N.-J. Zhong, Y.-Z. Wang, L.
Cheng, D. Wang, L. Liu, Org. Biomol. Chem. 2018, 16, 5214-5227.
[11] H.-L. Cui, X. Feng, J. Peng, J. Lei, K. Jiang, Y.-C. Chen, Angew. Chem.
Int. Ed. 2009, 48, 5737-5740.
[12] The reactions were qualitatively observed to proceed with relatively high
rates til about 50% conversion of the fluoride and then noticeably slower
which is consistent with the dynamic kinetic resolution scenario for these
reactions suggesting that formation of the ammonium intermediate might
be the rate determining step in the reaction mechanism. When the
reactions were interrupted before completion, recovered starting material
was determined to be enriched in one enantiomer.
[13] J.-P. Jourdan, M. Since, L. El Kihel, C. Lecoutey, S. Corvaisier, R. Legay,
J. Sopková-de Oliveira Santos, T. Cresteil, A. Malzert-Fréon, C. Rochais,
P. Dallemagne, ChemMedChem 2017, 12, 913-916.
[14] a) Y. Du, X. Han, X. Lu, Tetrahedron Lett. 2004, 45, 4967-4971; b) C.-W.
Cho, J.-R. Kong, M. J. Krische, Org. Lett. 2004, 6, 1337-1339; c) J. Wang,
H. Li, L.-S. Zu, W. Wang, Org. Lett. 2006, 8, 1391-1394; d) J. Wang, L.
Zu, H. Li, H. Xie, W. Wang, Synthesis 2007, 2576-2580; e) T.-Z. Zhang,
L.-X. Dai, X.-L. Hou, Tetrahedron: Asymmetry 2007, 18, 1990−1994; f) G.-
N. Ma, S.-H. Cao, M. Shi, Tetrahedron: Asymmetry 2009, 20, 1086−1092;
g) S. Gogoi, C.-G. Zhao, D. Ding, Org. Lett. 2009, 11, 2249-2252; h) H.-L.
Cui, X. Feng, J. Peng, J. Lei, K. Jiang, Y.-C. Chen, Angew. Chem. Int. Ed.
2009, 48, 5737-5740; i) A. Lin, H. Mao, X. Zhu, H. Ge, R. Tan, C. Zhu, Y.
Cheng, Chem. Eur. J. 2011, 17, 13676-13679; j) T. Furukawa, J. Kawazoe,
W. Zhang, T. Nishimine, E. Tokunaga, T. Matsumoto, M. Shiro, N. Shibata,
Angew. Chem. Int. Ed. 2011, 50, 9684-9688; k) H. Deng, Y. Wei, M. Shi,
Eur. J. Org. Chem. 2011, 2011, 1956−1960; l) F. Zhong, J. Luo, G.-Y.
Chen, X. Dou, Y. Lu, J. Am. Chem. Soc. 2012, 134, 10222−10227; m) H.
Lu, J.-B. Lin, J.-Y. Liu, P.-F. Xu, Chem. Eur. J. 2014, 20, 11659-11663; n)
X. Zhao, T. Kang, J. Shen, F. Sha, X. Wu, Chin. J. Chem. 2015, 33,
1333−1337; o) T.T.D. Ngo, T.H. Nguyen, C. Bournaud, R. Guillot, M.
Toffano, G. Vo-Thanh, Asian J. Org. Chem. 2016, 5, 895-899; p) M.
Kamlar, I. Cisarova, S. Hybelbauerova, J. Vesely, Eur. J. Org. Chem. 2017,
2017, 1926-1930; q) H. Wang, L. Yu, M. Xie, J. Wu, G. Qu, K. Ding, H.
Guo, Chem. Eur. J. 2018, 24, 1425-1430; r) Z. Li, M. Frings, H. Yu, G.
Raabe, C. Bolm, Org. Lett. 2018, 20, 7367-7370; s) H. Wang, C. Guo,
Angew. Chem. Int. Ed. 2019, 58, 2854-2858.
[15] a) T. Furukawa, T. Nishimine, E. Tokunaga, K. Hasegawa, M. Shiro, N.
Shibata, Org. Lett. 2011, 13, 3972-3975; b) T. Nishimine, K. Fukushi, N.
Shibata, H. Taira, E. Tokunaga, A. Yamano, M. Shiro, N. Shibata, Angew.
Chem. Int. Ed. 2014, 53, 517-520; c) T. Nishimine, H. Taira, E. Tokunaga,
M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2016, 55, 359-363; d) S.
Okusu, H. Okazaki, E. Tokunaga, V. A. Soloshonok, N. Shibata, Angew.
Chem. Int. Ed. 2016, 55, 6744-6748; e) T. Nishimine, H. Taira, S. Mori, O.
Matsubara, E. Tokunaga, H. Akiyama, V. A. Soloshonok, N. Shibata,
Chem. Commun. 2017, 53, 1128-1131. Shibata has pioneered the use of
silylated C-nucleophiles in Lewis base catalyzed substitution of allylic
fluorides. Despite the possibility of transferring any of the four carbon
substituents from the silicon atom, the least basic substituent is delivered
as the nucleophile. We recognized that if the similar concept is applied to
N-trialkylsilyl compounds as surrogates of N-centered nucleophiles, only
the N-nucleophile would be delivered by virtue of being the least basic
substituent on silicon atom.
[16] T. Stahl, H. F. T. Klare, M. Oestreich, ACS Catal. 2013, 3, 1578-1587.
[17] D. S. Allgäuer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R. Ofial,
H. Mayr, J. Am. Chem. Soc. 2017, 139, 13318-13329.
This article is protected by copyright. All rights reserved.