N. Kise et al. / Tetrahedron: Asymmetry 14 (2003) 2495–2497
2497
Figure 1.
Table 2. Relative energies between isomers of 9 (kcal/mol)
Jack, I. R. J. Chem. Soc., Perkin
1
1982, 183–
190.
Method
(R,R)-9
(R,S)-9
(S,S)-9
2. (a) Takano, S.; Ohkawa, T.; Tamori, S.; Satoh, S.;
Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988,
189–191; (b) Samizu, K.; Ogasawara, K. Chem. Lett. 1995,
543–544.
3. (a) van Oeveren, A.; Jansen, J. F. G. A.; Feringa, B. L. J.
Org. Chem. 1994, 59, 5999–6007; (b) Latip, J.; Hartley,
T. G.; Waterman, P. G. Phytochemistry 1999, 51, 107–
110.
RHF/AM1
RHF/PM3
RB3LYP 3-21G*
RB3LYP 6-31G*
0
0
0
0
5.13
3.58
4.20
1.32
3.84
3.65
2.84
4.16
all the methods show that (R,R)-9 is the most thermo-
dynamically stable isomer. These computational results
are consistent with the experimental results.
4. Kise, N.; Fujimoto, A.; Ueda, N. Tetrahedron: Asymmetry
2002, 13, 1845–1847.
5. McNulty, J.; Millar, M. J. J. Org. Chem. 1999, 64, 5312–
5314.
In conclusion, the oxidative intramolecular coupling of
the diaroylacetates of (1R,1%R)-exo,exo%-3,3%-biisobor-
neol with NaH–Br2 gave the corresponding (R,R)-iso-
mers in high stereoselectivity (92–94% de). The
stereoselectivity was considerably improved by this
intramolecular methodology, when compared with the
intermolecular coupling previously reported by us.4
6. The chemical shifts (l) of newly formed methyne protons
in 5 were as follows: (R,R)-5a 5.03 (s); (R,S)-5a 4.75 and
4.79 (d, J=3.2 Hz); (S,S)-5a 5.60 (s); (R,R)-5b 5.13 (s);
(R,S)-5b 4.85 and 4.89 (d, J=3.2 Hz); (S,S)-5b 5.66 (s).
7. (−)-Sesamin 7: [h]2D5=−64.0 (c 1.0, CHCl3), lit.2a [h]2D2=−
64.5 (c 1.05, CHCl3).
8. (−)-Eudesmin 8: [h]2D5=−64.7 (c 1.0, CHCl3), lit.3b [h]2D3=−
64.2 (c 1.1, CHCl3).
The typical procedure for the oxidative coupling of 4
with NaH-Br2 is as follows (run 5 in Table 1): To a
suspension of NaH (2.5 mmol) in DMF (2.5 mL) was
added a solution of 4 (1.0 mmol) in DMF (2.5 mL) at
25°C under N2. After the mixture was stirred for 30
min, Br2 (160 mg, 1.0 mmol) was added. After the
mixture was stirred for an additional hour, THF (5 mL)
was added. The mixture was stirred for a further 12 h,
diluted with 1 M HCl (20 mL), and then extracted with
Et2O. The major isomer of 5 was isolated by column
chromatography on silica gel (hexane/ethyl acetate),
and gave satisfactory spectroscopic data and elemental
analysis. (R,R)-5a: [h]2D5=+110 (c 0.97, CHCl3). (R,R)-
5b: mp 123–125°C; [h]2D5=+100 (c 0.99, CHCl3).
9. The calculations were carried out using the Gaussian 98W
program: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R.
E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;
Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli,
C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.
A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gom-
perts, R.; Martin, R. L.; Fox, D. J. Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle,
E. S.; Pople, J. A. Gaussian 98W, Revision A.9; Gaussian,
Inc.: Pittsburgh, PA, 1998.
References
1. (a) Beroza, M.; Schechter, M. S. J. Am. Chem. Soc. 1956,
78, 1242–1247; (b) Pelter, A.; Ward, R. S.; Watson, D. J.;