Organic Letters
Letter
(2) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.;
̃
(Table 3). Moderate to excellent yields of trifluoromethyl-
thiolated products were observed with a variety of directing
groups bearing an ortho-nitrogen including imine, pyridyl,
pyrimidyl, amide, and oxazoline directing groups. In stark
contrast, esters and aldehydes were ineffective as directing
groups, presumably due to their weaker coordination to Ni.
Acidicgroups(Table3,entries4and6)weretolerated, butonly
to a certain extent. In the absence of any directing group (entry
10), no product was obtained under the established conditions,
evenforarylbromides, emphasizingtheneedforadirectinggroup
under mild conditions. Moreover, such nitrogen-based directing
groupsarereadilyamenabletofurthersyntheticmanipulationand
are also common structural motifs in bioactive compounds.
Notably, although Ni(0) complexes are known to activate Csp2−
H and Csp2−S bonds, we did not observe any side products or
product decomposition during the reaction.
Encouraged by our results, we sought to determine the
functional group compatibility of the catalytic system. Various
aryl chlorides containing potentially reactive functional groups
were tested (Table 4). We were pleased to observe that the
method is highly selective for substituting ortho-chlorides, even in
the presence of other halides (entries 1, 2, 5, 6, 10, and 12). The
method can also be expanded toward nitrogen-containing
heterocycles, with comparable yields observed for 2-chloro- and
2-bromonicotinaldehyde (entry 11) and moderate yields for 2-
chloronicotinamide (entry 12).
Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422−518.
(3) Harper, D. B.; O’Hagan, D. Nat. Prod. Rep. 1994, 11, 123−133.
(4) (a) Tlili, A.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 6818−6819.
(b) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014,
2415−2428. (c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015,
115, 731−764.
(5)(a)Hansch, C.;Leo, A.;Unger, S.H.;Kim,K. H.;Nikaitani, D.;Lien,
E. J. J. Med. Chem. 1973, 16, 1207−1216. (b) Hansch, C.; Leo, A.; Taft, R.
W. Chem. Rev. 1991, 91, 165−195.
(6) (a) Silverstone, T.; Fincham, J.; Plumley, J. Br. J. Clin. Pharmacol.
́
1979, 7, 353−356. (b) Laczay, P.; Voros, G.; Semjen, G. Int. J. Parasitol.
̈
̈
1995, 25, 753−756. (c) Yagupolskii, L. M.; Maletina, I. I.; Petko, K. I.;
Fedyuk, D.V.;Handrock, R.;Shavaran, S.S.;Klebanov,B. M.;Herzig,S. J.
Fluorine Chem. 2001, 109, 87−94. (d) MacKay, R. J.; Tanhauser, S. T.;
Gillis, K. D.; Mayhew, I. G.; Kennedy, T. J. Am. J. Vet. Res. 2008, 69, 396−
402. (e) Islam, R.; Lynch, J. W. Br. J. Pharmacol. 2012, 165, 2707−2720.
(7) (a) Nodiff, E. A.; Lipschutz, S.; Craig, P. N.; Gordon, M. J. Org.
Chem. 1960, 25, 60−65. (b) Suda, M.; Hino, C. Tetrahedron Lett. 1981,
22, 1997−2000. (c) Kremsner, J. M.; Rack, M.; Pilger, C.; Kappe, C. O.
Tetrahedron Lett. 2009, 50, 3665−3668.
(8) Yagupolskii, L. M.; Matsnev, A. V.; Orlova, R. K.; Deryabkin, B. G.;
Yagupolskii, Y. L. J. Fluorine Chem. 2008, 129, 131−136.
(9) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156−2164.
(10) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007,
46, 754−757.
(11) (a) Movchun, V. N.; Kolomeitsev, A. A.; Yagupolskii, Y. L. J.
Fluorine Chem. 1995, 70, 255−257. (b) Billard, T.; Large, S.; Langlois, B.
R. Tetrahedron Lett. 1997, 38, 65−68.
(12)(a)Baert, F.;Colomb, J.;Billard, T. Angew. Chem., Int. Ed. 2012,51,
10382−10385. (b) Ferry, A.; Billard, T.; Bacque, E.; Langlois, B. R. J.
́
Fluorine Chem. 2012, 134, 160−163. (c) Shao, X.;Wang, X.; Yang, T.;Lu,
L.;Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 3457−3460. (d)Yang, Y.-D.;
Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am.
Chem. Soc. 2013, 135, 8782−8785. (e)Pluta, R.;Rueping, M. Chem. -Eur.
J. 2014, 20, 17315−17318. (f) Xu, C.; Ma, B.; Shen, Q. Angew. Chem., Int.
Ed. 2014, 53, 9316−9320. (g) Ma, B.; Shao, X.; Shen, Q. J. Fluorine Chem.
2015, 171, 73−77.
In summary, we have established a simple protocol for the
ortho-selective trifluoromethylthiolation of aryl chlorides and
bromides using Ni(cod)2 and AgSCF3 under mild reaction
conditions, in the absence of any ligand or additive. A range of aryl
and heteroaryl halides were converted to the corresponding
trifluoromethylaryl sulfides in moderate to excellent yields.
Mechanistic investigations, along with the development of a
catalytic system that does not require a directing group to activate
aryl chlorides selectively, are currently ongoing.
(13) (a) Yagupolskii, L.; Kondratenko, N.; Sambur, V. Synthesis 1975,
1975, 721−723. (b)Remy, D. C.;Rittle, K. E.;Hunt, C. A.;Freedman, M.
B. J. Org. Chem. 1976, 41, 1644−1646. (c) Clark, J. H.; Jones, C. W.;
Kybett, A. P.; McClinton, M. A.; Miller, J. M.; Bishop, D.; Blade, R. J. J.
Fluorine Chem. 1990, 48, 249−253. (d) Clark, J. H.; Tavener, S. J. J.
Fluorine Chem. 1997, 85, 169−172. (e)Tavener, S. J.;Adams, D. J.;Clark,
J. H. J. Fluorine Chem. 1999, 95, 171−176. (f) Adams, D. J.; Clark, J. H. J.
Org. Chem. 2000, 65, 1456−1460. (g) Adams, D. J.; Goddard, A.;Clark, J.
H.; Macquarrie, D. J. Chem. Commun. 2000, 987−988. (h) Kolomeitsev,
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Full experimental details (PDF)
́
A.; Medebielle, M.; Kirsch, P.; Lork, E.; Roschenthaler, G.-V. Perkin
̈
AUTHOR INFORMATION
Corresponding Author
■
Trans. 1 2000, 2183−2185. (i) Tyrra, W.; Naumann, D.; Hoge, B.;
Yagupolskii, Y. L. J. Fluorine Chem. 2003, 119, 101−107. (j) Zhang, C.-P.;
Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183−185. (k) Zhang, M.; Weng,
Z. Adv. Synth. Catal. 2016, 358, 386−394.
Author Contributions
(14) (a) Chen, Q.-Y.; Duan, J.-X. J. Chem. Soc., Chem. Commun. 1993,
918−919. (b) Chen, C.; Xie, Y.; Chu, L.; Wang, R.-W.; Zhang, X.; Qing,
F.-L. Angew. Chem. 2012, 124, 2542−2545. (c) Zhai, L.; Li, Y.; Yin, J.; Jin,
K.; Zhang, R.; Fu, X.; Duan, C. Tetrahedron 2013, 69, 10262−10266.
(d)Danoun, G.;Bayarmagnai, B.;Gruenberg, M. F.;Goossen, L. J. Chem.
Sci. 2014, 5, 1312−1316. (e) Zhong, W.; Liu, X. Tetrahedron Lett. 2014,
55, 4909−4911.
†X.W. and M.O.S. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Natural Sciences and Engineering Council of
Canada (Discovery, CREATE, Research Tools and Instruments)
and the University of British Columbia for supporting this
research. W.C. is grateful to the CREATE Sustainable Synthesis
Program for their support.
(15) Teverovskiy, G.;Surry, D. S.;Buchwald, S. L. Angew. Chem., Int. Ed.
2011, 50, 7312−4.
(16) (a) Sun, A. D.; Love, J. A. Org. Lett. 2011, 13, 2750−2753. (b) Sun,
A. D.; Leung, K.; Restivo, A. D.; LaBerge, N. A.; Takasaki, H.; Love, J. A.
Chem. - Eur. J. 2014, 20, 3162−3168.
(17) (a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134,
18237−18240. (b) Xu, C.; Shen, Q. Org. Lett. 2014, 16, 2046−2049.
(18) Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc.
2015, 137, 4164−72.
REFERENCES
■
(1) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881−
̈
1886. (b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.;
Meanwell, N. A. J. Med. Chem. 2015, 58, 8315−8359.
D
Org. Lett. XXXX, XXX, XXX−XXX