10.1002/anie.201903759
Angewandte Chemie International Edition
COMMUNICATION
Until now, enantioselective phenol-coupling reactions have
been mainly associated with cytochrome P450 enzymes. Even in
biosynthetic pathways of other dimeric γ-naphthopyrones similar
to ustilaginoidins, cytochrome P450 enzymes catalyze the
dimerization reactions.[27] However, the group of laccases
described here possesses an unprecedented selectivity toward
the formation of the biaryl bond, making this a remarkable
example of convergent evolution.
2019, DOI 10.1101/601716.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
L. B. Davin, H.-B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin,
S. Sarkanen, N. G. Lewis, Science 1997, 275, 362–367.
S. Shibata, Y. Ogihara, A. Ohta, Chem. Pharm. Bull. 1963, 11,
1179–1182.
G. Tertzakian, R. H. Haskins, G. P. Slater, L. R. Nesbitt, Proc.
Chem. Soc. 1964, 195.
M. Matsumoto, H. Minato, E. Kondo, T. Mitsugi, K. Katagiri, J.
Antibiot. 1975, 28, 602–604.
In summary, we have demonstrated inherent atropselectivity
for four phenol-coupling laccases; their function does not depend
on any dirigent proteins from the source organisms. Three of the
laccases were consistently P-atropselective under all tested
conditions, while one enzyme (UstL) was modifiable, enabling
access to both enantiomers of the product. This illustrates the
tendency of nature towards diversity-oriented biosynthesis.[28] Yet,
the biological relevance of flexibility for U. virens remains to be
examined, as its natural products occur in one fixed configuration.
Although UstL was the only laccase that substantially changed
selectivity, it is possible that this flexible atropselectivity is also
present in the other three laccases, only not observed under the
tested conditions. The factors affecting the selectivity, such as
possible concentration-dependent oligomerization states of the
laccases, remain to be investigated. We expect that
stereoselectivity in laccases is not unique to polyketide
dimerization and that further specialized laccases will be identified
in various metabolic pathways.
S. Sekita, K. Yoshihira, S. Natori, Chem. Pharm. Bull. 1980, 28,
2428–2435.
X. Kong, X. Ma, Y. Xie, S. Cai, T. Zhu, Q. Gu, D. Li, Arch.
Pharmacal Res. 2013, 36, 739–744.
K. Koyama, S. Natori, Y. Iitaka, Chem. Pharm. Bull. 1987, 35, 4049–
4055.
[17]
[18]
S. Natori, K. Koyama, Chem. Pharm. Bull. 1987, 35, 578–584.
J. H. Cardellina, V. I. Roxas-Duncan, V. Montgomery, V. Eccard, Y.
Campbell, X. Hu, I. Khavrutskii, G. J. Tawa, A. Wallqvist, J. B.
Gloer, et al., ACS Med. Chem. Lett. 2012, 3, 387–391.
W. Sun, A. Wang, D. Xu, W. Wang, J. Meng, J. Dai, Y. Liu, D. Lai,
L. Zhou, J. Agric. Food Chem. 2017, 65, 5151–5160.
J.-E. Kim, K.-H. Han, J. Jin, H. Kim, J.-C. Kim, S.-H. Yun, Y.-W.
Lee, Appl. Environ. Microbiol. 2005, 71, 1701–1708.
T. Kumagai, T. Ishii, G. Terai, M. Umemura, M. Machida, K. Asai,
Genome Announc. 2016, 4, 851–874.
[19]
[20]
[21]
[22]
[23]
Concordia University, “Genozymes Project Public Genomes”, can
R. M. Berka, I. V. Grigoriev, R. Otillar, A. Salamov, J. Grimwood, I.
Reid, N. Ishmael, T. John, C. Darmond, M. C. Moisan, et al., Nat.
Biotechnol. 2011, 29, 922–929.
Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 235777276. We thank the
NRRL (USA), TBRC (Thailand), and NARO (Japan) culture
collections for supplying the fungal strains.
[24]
During preparation of this manuscript, Li et al. published knockout
studies on ustilaginoidin biosynthesis genes in U. virens. The genes
are identical to the ust BGC covered in this work. Y. Li, M. Wang, Z.
Liu, K. Zhang, F. Cui, W. Sun, Environ. Microbiol. 2019, DOI
10.1111/1462-2920.14572.
Keywords: atropisomerism • dimeric polyketides •
enantioselectivity • oxidoreductases • phenol coupling
[25]
[26]
R. J. N. Frandsen, C. Schütt, B. W. Lund, D. Staerk, J. Nielsen, S.
Olsson, H. Giese, J. Biol. Chem. 2011, 286, 10419–10428.
S. Lu, W. Sun, J. Meng, A. Wang, X. Wang, J. Tian, X. Fu, J. Dai, Y.
Liu, D. Lai, et al., J. Agric. Food Chem. 2015, 63, 3501–3508.
S. Obermaier, M. Müller, Manuscript submitted for publication 2019.
R. D. Firn, C. G. Jones, Nat. Prod. Rep. 2003, 20, 382.
[1]
[2]
F. Xu, Biochemistry 1996, 35, 7608–7614.
M. A. Constantin, J. Conrad, U. Beifuss, Green Chem. 2012, 14,
2375–2379.
[27]
[28]
[3]
[4]
[5]
[6]
[7]
C. Engelmann, S. Illner, U. Kragl, Process Biochem. 2015, 50,
1591–1599.
T. Kudanga, B. Nemadziva, M. Le Roes-Hill, Appl. Microbiol.
Biotechnol. 2017, 101, 13–33.
M. Kawaguchi, T. Ohshiro, M. Toyoda, S. Ohte, J. Inokoshi, I. Fujii,
H. Tomoda, Angew. Chem. Int. Ed. 2018, 57, 5115–5119.
L. Fürtges, S. Obermaier, W. Thiele, S. Foegen, M. Müller,
ChemBioChem 2019, DOI 10.1002/cbic.201900041.
I. Effenberger, B. Zhang, L. Li, Q. Wang, Y. Liu, I. Klaiber, J.
Pfannstiel, Q. Wang, A. Schaller, Angew. Chem. Int. Ed. 2015, 54,
14660–14663.
[8]
[9]
J. Hu, F. Sarrami, H. Li, G. Zhang, K. A. Stubbs, E. Lacey, S. G.
Stewart, A. Karton, A. M. Piggott, Y.-H. Chooi, Chem. Sci. 2019, 10,
1457–1465.
A. S. Urquhart, J. Hu, Y.-H. Chooi, A. Idnurm, bioRxiv Microbiol.
This article is protected by copyright. All rights reserved.