10.1002/chem.202000927
Chemistry - A European Journal
COMMUNICATION
O
Experimental Section
R
AcO
Ar
mCPBA +
2 AcOH
OAc
Ar*I
General Procedure for the catalytic asymmetric α-acetoxylation: Iodoarene
7b (10.7 mg, 0.0150 mmol, 5.0 mol%) and acetyl enol ether 4 (0.30 mmol)
were dissolved in CH2Cl2 (1.12 mL) and AcOH (0.38 mL) under nitrogen
atmosphere. After the addition of BF3•OEt2 (11 µL, 0.090 mmol, 30 mol%)
and mCPBA (81 mg, 0.36 mmol, 1.2 equiv., 77% purity), the reaction mix-
ture was stirred for 2 h at room temperature. Subsequently, saturated
aqueous Na2S2O3 (5 mL) was added and the resulting mixture was ex-
tracted with CH2Cl2 (3 x 10 mL) The combined organic layers were washed
with saturated aqueous NaHCO3 (30 mL), dried over anhydrous MgSO4,
concentrated under vacuum and the crude mixture was purified by flash
column chromatography.
(R)-5
7b
mCBA +
H2O
SN2
BF3
O
O
O
O
OAc
O
I
R
Ar
Ar*
6h
I
Ar*
OAc
8
OAc
R
Ar
OAc
+
Ac2O
4
Scheme 3. Proposed mechanism for the iodine(III)-mediated α-acetoxylation
reaction. Active catalyst 6h can furthermore undergo ligand exchange with m-
chlorobenzoic acid (mCBA) and H2O.
Acknowledgements
In summary, we have designed the first enantioselective syn-
thesis of α-acetoxylated ketones mediated by hypervalent io-
dine(I/III) catalysis. Using easily accessible acetyl enol ethers and
a low catalyst loading of only 5 mol% in combination with mCPBA
as terminal oxidant and boron trifluoride as Lewis acid provided
high yields and enantioselectivities. The extensive optimisation of
the iodoarene catalyst based on a resorcinol core revealed that
best results were obtained with sterically demanding flexible lac-
tamide side chains. As the reaction rate of the direct oxidation with
mCPBA is lower relative to the iodine(III)-mediated oxidation, an
enantioselective catalytic transformation was realised.
We thank the Fonds der Chemischen Industrie (TH) and the
School of Chemistry, Cardiff University, for financial support.
Keywords: a-Acetoxylation • Catalysis • Hypervalent iodine •
Ketones • Stereochemistry
[1]
a) M. Ochiai, Chem. Rec. 2007, 7, 12–23; b) T. Dohi, Y. Kita, Chem.
Commun. 2009, 2073–2085; c) V. V. Zhdankin, Hypervalent Iodine
Chemistry: Preparation, Structure, and Synthetic Applications of Poly-
valent Iodine Compounds, Wiley, New York, 2014; d) T. Kaiho, Iodine
Chemistry and Applications, Wiley, New York, 2015; e) A. Yoshimura,
V. V. Zhdankin, Chem. Rev. 2016, 116, 3328–3435; f) T. Wirth, Hyper-
valent Iodine Chemistry, Top. Curr. Chem. 2016, 373, Springer, Berlin
M. Ochiai, Top. Curr. Chem. 2003, 224, 5–69.
a) M. Fujita, Y. Ookubo, T. Sugimura, Tetrahedron Lett. 2009, 50,
1298–1300; b) M. Fujita, Y. Yoshida, K. Miyata, A. Wakisaka, T. Sugi-
mura, Angew. Chem. Int. Ed. 2010, 49, 7068–7071; Angew. Chem.
2010, 122, 7222–7225; c) S. Haubenreisser, T. H. Wöste, C. Martínez,
K. Ishihara, K. Muñiz, Angew. Chem. Int. Ed. 2016, 55, 413–417; An-
gew. Chem. 2016, 128, 422–426; d) K. Muñiz, L. Barreiro, R. M.
Romero, C. Martínez, J. Am. Chem. Soc. 2017, 139, 4354–4357.
a) T. Imamoto, H. Koto, Chem. Lett. 1986, 967–968; b) D. G. Ray III, G.
F. Koser, J. Am. Chem. Soc. 1990, 112, 5672–5673; c) V. V. Zhdankin,
J. T. Smart, P. Zhao, P. Kiprof, Tetrahedron Lett. 2000, 41, 5299–5302;
d) U. Ladziata, J. Carlson, V. V. Zhdankin, Tetrahedron Lett. 2006, 47,
6301–6304; e) S. M. Altermann, S. Schäfer, T. Wirth, Tetrahedron
2010, 66, 5902–5907.
a) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H.
Fujioka, S. B. Caemmerer, Y. Kita, Angew. Chem. Int. Ed. 2008, 47,
3787–3790; Angew. Chem. 2008, 120, 3847–3850; b) T. Dohi, N. Ta-
kenaga, T. Nakae, Y. Toyoda, M. Yamasaki, M. Shiro, H. Fujioka, A.
Maruyama, Y. Kita, J. Am. Chem. Soc. 2013, 135, 4558–4566; c) M. U-
yanik, T. Yasui, K. Ishihara, Angew. Chem. Int. Ed. 2010, 49, 2175–
2177; Angew. Chem. 2010, 122, 2221–2223; d) M. Uyanik, T. Yasui, K.
Ishihara, Angew. Chem. Int. Ed. 2013, 52, 9215–9218; Angew. Chem.
2013, 125, 9385–9388.
a) U. Farid, F. Malmedy, R. Claveau, L. Albers, T. Wirth, Angew. Chem.
Int. Ed. 2013, 52, 7018–7022; Angew. Chem. 2013, 125, 7156–7160; b)
M. Brown, R. Kumar, J. Rehbein, T. Wirth, Chem. Eur. J. 2016, 22,
4030–4035; c) F. Malmedy, T. Wirth, Chem. Eur. J. 2016, 22, 16072–
16077; d) M. W. Justik, G. F. Koser, Tetrahedron Lett. 2004, 45, 6159–
6163; e) A. Ahmad, L. F. Silva, Synthesis 2012, 44, 3671–3677; A. Yo-
shimura, K. R. Middleton, M. W. Luedtke, C. Zhu, V. V. Zhdankin, J.
Org. Chem. 2012, 77, 11399–11404.
[7]
a) M. Marigo, K. A. Jørgensen, Chem. Commun. 2006, 2001–2011; b)
E. A. Merritt, B. Olofsson, Synthesis 2011, 517–538; c) D. Dong, S.
Hao, Z. Wang, C. Chen, Org. Biomol. Chem. 2014, 12, 4278–4289; d)
A. Flores, E. Cots, J. Bergès, K. Muñiz, Adv. Synth. Catal. 2019, 361,
2–25.
R. D. Richardson, T. K. Page, S. Altermann, S. M. Paradine, A. N.
French, T. Wirth, Synlett 2007, 538–542.
J. Yu, J. Cui, X. Hou, S. Liu, W. Gao, S. Jiang, J. Tian, C. Zhang, Tetra-
hedron: Asymmetry 2011, 22, 2039–2055.
[8]
[9]
[2]
[3]
[10] A. Guilbault, B. Basdevant, V. Wanie, C. Y. Legault, J. Org. Chem.
2012, 77, 11283–11295.
[11] G. Levitre, A. Dumoulin, P. Retailleau, A. Panossian, F. R. Leroux, G.
Masson, J. Org. Chem. 2017, 82, 11877–11883.
[12] A. H. Abazid, B. J. Nachtsheim, Angew. Chem. Int. Ed. 2020, 59, 1479–
1484; Angew. Chem. 2020, 132, 1495–1500.
[13] B. Basdevant, C. Y. Legault, Org. Lett. 2015, 17, 4918–4921.
[14] F. Mizukami, M. Ando, T. Tanaka, J. Imamura, Bull. Chem. Soc. Jpn.
1978, 51, 335–336.
[4]
[5]
[15] M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto, J. Am.
Chem. Soc. 2005, 127, 12244–12245.
[16] a) S. Ghosh, S. Pradhan, I. Chatterjee, Beilstein J. Org. Chem. 2018,
14, 1244–1262; b) A. Parra, Chem. Rev. 2019, 119, 12033–12088.
[17] a) I. M. Kalinowska, J. Szawkało, K. K. Krawczyk, J. K. Maurin, Z. Czar-
nocki, Synthesis 2011, 1809–1813; b) S. Chen, L. Hao, Y. Zhang, B. Ti-
wari, Y. R. Chi, Org. Lett. 2013, 15, 5822–5825; c) P. C. B. Page, S. M.
Almutairi, Y. Chan, G. R. Stephenson, Y. Gama, R. L. Goodyear, A.
Douteau, S. M. Allin, G. A. Jones, J. Org. Chem. 2019, 84, 544–559.
[18] R. M. Moriarty, H. Hu, S. C. Gupta, Tetrahedron Lett. 1981, 22, 1283–
1286.
[19] S. Izquierdo, S. Essafi, I. del Rosal, P. Vidossich, R. Pleixats, A. Vallri-
bera, G. Ujaque, A. Lledós, A. Shafir, J. Am. Chem. Soc. 2016, 138,
12747–12750.
[20] a) S. Beaulieu, C. Y. Legault, Chem. Eur. J. 2015, 21, 11206–11211; b)
S. Arava, J. N. Kumar, S. Maksymenko, M. A. Iron, K. N. Parida, P.
Fristrup, A. M. Szpilman, Angew. Chem. Int. Ed. 2017, 56, 2599–2603;
Angew. Chem. 2017, 129, 2643–2647; c) P. Norrby, T. B. Petersen, M.
Bielawski, B. Olofsson, Chem. Eur. J. 2010, 16, 8251–8254.
[6]
This article is protected by copyright. All rights reserved.