4374
K. Barral et al. / Bioorg. Med. Chem. Lett. 13 (2003) 4371–4374
Table 1. Anti-HIV and anti-HSV activities of compounds 9, 10, (ꢃ)-17, and (ꢃ)-18
Compd
Anti-HIV activity
Anti-HSV activity
EC50 (mM)
HIV-1
in CEM cells
EC50 (mM)
HIV-2
in CEM cells
CC50 (mM)
EC50 (mM)
HSV-1 (KOS)
in HEL cells
EC50 (mM)
HSV-2 (G)
in HEL cells
EC50 (mM)
HSV-1 TK neg
in HEL cells
CC50 (mM)
9
10
(ꢃ)-17
(ꢃ)-18
ACV
>50
>50
>80
>80
>50
>50
>80
>80
101ꢃ6.2
>50
203ꢃ2.5
203ꢃ11.9
>200
40
177
32
40
0.32
>900
500
81
500
500
80
95
88
>900
>900
>100
>400
>1700
90
1.3
>200
>200
(acyclovir)
DHPG
(ganciclovir)
HPMPC
(cidofovir)
>200
>200
>200
>200
>200
>200
—
0.06
—
—
—
>400
>350
0.57
EC50, effective concentration or concentration required to inhibit 50% of virus induced cytopathicity; CC50, cytotoxic concentration or concen-
tration required to reduce cells viability by 50%; —not determined.
References and Notes
and type 2 (HSV-2), vaccinia virus and vesicular stomatitis
virus in HEL cells, parainfluenza-3 virus, reovirus-1,
Sindbis virus, coxsackie B4 virus, Punta Toro virus in
Vero cells and respiratory syncytial virus in HeLa cell
cultures. The anti-HIV and HSV activities of com-
pounds 9, 10, 17 and 18 are represented in Table 1.
None of these compounds were active against any of the
tested viruses except for herpes simplex virus (Table 1).
Compound 10, 17 and 18 displayed moderate activity
against both wild-type HSV-1 and HSV-2, as well as
against a thymidine kinase deficient strain of HSV-1
that has a 270 fold reduced sensitivity for acyclovir than
the wild-type virus. The weak but consistent activity of
these compounds against HSV-1 and HSV-2 is
encouraging and may suggest that these new nucleosides
are metabolised to their 50-triphosphates or as such
recognised by the viral DNA polymerases. The (moder-
ate) activity of an form of a nucleoside (10 and 18) is
quite unusual, few such molecules have been reported.
Further work is needed both to design analogues with
an improved anti-herpes virus activity and to unravel
their mechanism of action.
1. Tilbrook, G. S.; Hider, R. C. Iron chelators for clinical use.
In Metals Ions in Biological Systems; Sigel, A., Sigel, H., Eds.;
Iron Transport and Storage in Microorganisms, Plants and
Animals, Vol. 35, Marcel Dekker: New York, 1998; p.691
2. Hider, R. C.; Liu, Z. D.; Piyamongkol, S. Tran. Sci. 2000,
23, 201.
3. Lederman, H. M.; Cohen, A.; Lee, J. W. W.; Freedman,
M. H.; Gelfand, E. W. Blood 1984, 64, 748.
4. Sappey, C.; Boelaert, J. R.; Legrand, P. S.; Forceille, C.;
Favier, A.; Piette, J. AIDS Res. Hum. Retroviruses 1995, 11, 1049.
5. (a) Georgiou, N. A.; van der Bruggen, T.; Hider, R. C.;
Marx, J.; Van Asbeck, B. S. Eur. J. Clin. Invest. 2002, 32, 91.
Georgiou, N. A.; van der Bruggen, T.; Oudshoorn, M.; Not-
tet, H.; Marx, J.; Van Asbeck, B. S. Trans. Sci. 2000, 23, 249.
Georgiou, N. A.; van der Bruggen, T.; Oudshoorn, M.; Nottet,
H.; Marx, J.; Van Asbeck, B. S. J. Clin. Virol. 2001, 20, 141
6. Dobbin, P. S.; Hider, R. C.; Hall, A. D.; Taylor, P. D.;
Sarpong, P.; Porter, J. B.; Xiao, G.; van der Helm, D. J. Med.
Chem. 1993, 36, 2448.
7. Niedballa, U.; Vorbruggen, H. J. Org. Chem. 1974, 39, 3668.
8. (a) Liu, G.; Bruenger, F. W.; Barrios, A. M.; Miller, S. C.
Nucleosides Nucleotides 1995, 14, 1901. (b) Mao, D. T.; Dris-
coll, J. S.; Marquez, V. E. J. Med. Chem. 1984, 27, 160.
9. Choi, W. B.; Wilson, L. J.; Yeola, S.; Liotta, D. C. J. Am.
Chem. Soc. 1991, 113, 9377.
10. Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761.
11. Huang, J. J.; Rideout, J. L.; Martin, G. E. Nucleosides
Nucleotides 1995, 14, 195.
12. Neyts, J.; Reymen, D.; Letourneur, D.; Jozefonvicz, J.;
Schols, D.; Este, J.; Andrei, G.; McKenna, P.; Witvrouw, M.;
Ikeda, S.; Clement, J.; De Clercq, E. Biochem. Pharmacol.
1995, 50, 743.
Acknowledgements
We wish to thank Dr. Robert Faure (St. Jerome Uni-
versity, Marseilles) for his expertise in conducting NMR
experiments and Mrs. Miette Stuyck, Mrs. Ann Absillis,
Mrs. Anita Vankierde and Mrs. Frieda De Meyer for
excellent technical assistance.