1596
Can. J. Chem. Vol. 79, 2001
Wiley–VCH, Weinheim. 1998. p. 213; (c) G. Strukul, Angew.
Chem. 110, 1256 (1998); Angew. Chem. Int. Ed. Engl. 37,
1198 (1998); (d) C. Bolm and O. Beckmann. In Comprehen-
sive asymmetric catalysis. Edited by E.N. Jacobsen, A. Pfaltz,
and H. Yamamoto. Springer, Berlin. 1999. p. 803.
an (R)-configuration was achieved with an enantiomeric ex-
cess of 40%.8 However, 6,6>-disubstituted BINOL (S)-21
proved to be the most effective ligand, leading to (S)-8 with
77% ee, which is an even higher enantioselectivity than the
one the unsubstituted BINOL ligand induced in the oxidation
of 7.9 Hence, modifications at this end of the BINOL scaffold
with different groups seem to be promising in regards to fur-
ther improvement of the enantioselectivity. We are currently
investigating these BINOL derivatives along with other oxi-
dants and substrates in the aluminum-mediated Baeyer-
Villiger oxidation.
3. (a) A. Gusso, C. Baccin, F. Pinna, and G. Strukul. Organo-
metallics, 13, 3442 (1994); (b) G. Strukul, A. Varagnolo, and
F. Pinna. J. Mol. Catal. 117, 413 (1997); (c) C. Paneghetti, R.
Gavagnin, F. Pinna, and G. Strukul. Organometallics, 18, 5057
(1999).
4. (a) C. Bolm, G. Schlingloff, and K. Weickhardt. Angew.
Chem. 106, 1944 (1994); Angew. Chem. Int. Ed. Engl. 33, 1848
(1994); (b) C. Bolm and G. Schlingloff. J. Chem Soc. Chem.
Commun. 1247 (1995); (c) C. Bolm, G. Schlingloff, and F.
Bienewald. J. Mol. Cat. 117, 347 (1997); (d) C. Bolm, T.K.K.
Luong, and G. Schlingloff. Synlett, 1151 (1997); (e) C.
Bolm, O. Beckmann, and T.K.K. Luong. In Asymmetric oxi-
dation reactions: a practical approach. Edited by T. Katsuki.
Oxford University Press, Oxford. 2001. p. 1476.
5. (a) M. Lopp, A. Paju, T. Kanger, and T. Pehk. Tetrahedron
Lett. 37, 7583 (1996); (b) T. Kanger, K. Kriis, A. Paju, T.
Pehk, and M. Lopp. Tetrahedron: Asymmetry, 9, 4475 (1998);
(c) T. Sugimura, Y. Fujiwara, and A. Tai. Tetrahedron Lett. 38,
6019 (1997); (d) T. Shinohara, S. Fujiora, and H. Kotsuki.
Heterocycles, 55, 237 (2001); (e) C. Bolm and O. Beckmann.
Chirality, 12, 523 (2000).
6. (a) K. Maruoka and H. Yamamoto. In Catalytic asymmetric
synthesis Edited by I. Ojima. VCH, New York. 1993. p. 413;
(b) T. Ooi and K. Maruoka. In Comprehensive asymmetric
catalysis. Vol. 3. Edited by E.N. Jacobsen, A. Pfaltz, and
H. Yamamoto. Springer, Berlin. 1999. p. 1237; (c) C. Chapuis
and J. Jurczak. Helv. Chim. Acta, 70, 436 (1987); (d) J. Bao,
W.D. Wulff, and A.L. Rheingold. J. Am. Chem. Soc. 115,
3814 (1993); (e) H. Urabe, K. Yamashita, K. Suzuki, K.
Kobayashi, and F. Sato. J. Org. Chem. 60, 3576 (1995); (f)
M.S. Sigman and E.N. Jacobsen. J. Am. Chem. Soc. 120, 5315
(1998); (g) Y. Hamashima, D. Sawada, M. Kanai, and M.
Shibasaki. J. Am. Chem. Soc. 121, 2641 (1999); (h) K. Maruoka,
T. Itoh, T. Shirasaka, and H. Yamamoto. J. Am. Chem. Soc.
110, 310 (1988); (i) K.B. Simonsen, N. Svenstrup, M. Roberson,
and K.A. Jørgensen. Chem. Eur. J. 6, 123 (2000); (j) M.
Takamura, Y. Hamashima, H. Usuda, M. Kanai, and M.
Shibasaki. Angew. Chem. 112, 1716 (2000); Angew. Chem.
Int. Ed. 39, 1650 (2000).
Experimental
In a typical procedure, a solution of Me2AlCl in hexanes
(0.10 mL, 1.0 M, 0.10 mmol) was injected to enantiopure
BINOL (29 mg, 0.10 mmol; obtained by resolution accord-
ing to ref. 18) in absolute toluene under argon atmosphere.
After stirring for 0.5–1 h at ambient temperature, the ketone
(0.20 mmol) was added to the suspension, which within
15 min at room temperature became less turbid. The mixture
was cooled down to –25°C before the addition of cumene
hydroperoxide (technical grade 80%, 57 mg, 0.30 mmol)
and then slowly let warm to room temperature again. After
12 h of stirring the mixture was treated with aq. HCl (0.5 M),
then diluted with ether, washed with saturated. aq. NaHCO3
and brine, and finally dried over MgSO4. The obtained solu-
tion was directly subjected to GC analysis for the determina-
tion of the conversion (calculated from area percentages in
the GC) and the ee (using chiral columns). The peak assign-
ments were assured by comparison with chromatograms of
ketones and racemic lactones.
For the correlations of optical rotations and absolute con-
figurations, see ref. 10a for 2a, ref. 10b for 2b, ref. 10c for
8, ref. 10d for 10, ref. 7e for 14, and ref. 10e for 16. In
ref. 7a, (R)-configurated 3-pentyl- and 3-hexyl-butyrolactones
were shown to have a positive sign of optical rotation. Thus,
the absolute configuration of octyl-bearing lactone (+)-12 is
supposed to be (R) too.
When isolated yields were to be determined, 1 to 2 mmol
of ketone were employed and the product purified by col-
umn chromatography on silica gel.
7. (a) H. Kosugi, K. Tagami, A. Takashi, H. Kanna, and H. Uda.
J. Chem. Soc. Perkin Trans. 1, 935 (1989); (b) A. Pelter, R.S.
Ward, D.M. Jones, and P. Maddocks. J. Chem. Soc. Perkin
Trans. 1, 2621 (1993); (c) S.S. Canan Koch and A.R.
Chamberlin. J. Org. Chem. 58, 2725 (1993); (d) M.P. Doyle,
M.N. Protopopova, Q.–L. Zhou, J.W. Bode, S.H. Simonsen,
and V. Lynch. J. Org. Chem. 60, 6654 (1995); (e) Shiotani, H.
Okada, T. Yamamoto, K. Nakamata, J. Adachi, and H.
Nakamoto. Heterocycles, 43, 113 (1996); (f) C. Mazzini, J.
Lebreton, V. Alphand, and R. Furstoss. Tetrahedron Lett. 38,
1195 (1997); (g) A. Krief, A. Ronvaux, and A. Tuch. Bull.
Soc. Chim. Belg. 106, 699 (1997); (h) K. Hirayama and K.
Mori. Eur. J. Org. Chem. 2211 (1999); (i) B.M. Trost and Y.H.
Rhee. J. Am. Chem. Soc. 121, 11680 (1999); (j) Y. Takaya, T.
Senda, H. Kurushima, M. Ogasawara, and T. Hayashi. Tetrahe-
dron: Asymmetry, 10, 4047 (1999); (k) G. Fardella, P. Barbetti,
G. Grandolini, I. Chiappini, V. Ambrogi, V. Scarcia, and A.
Acknowledgments
We are grateful to the Deutsche Forschungsgemeinschaft
(Schwerpunktprogramm Sauerstofftransfer/Peroxidchemie,
Graduiertenkolleg 440) and the Fonds der Chemischen
Industrie for support of our research program.
References
1. (a) A. Baeyer and V. Villiger. Ber. Deut. Chem. Ges. 32, 3625
(1899); (b) G. Krow. Org. Reactions, 43, 251 (1993); (c)
M. Renz and B. Meunier. Eur. J. Org. Chem. 737 (1999).
2. (a) C. Bolm. In Advances in catalytic processes. Vol. 2. Edited
by M.P. Doyle. JAI Press, Greenwich. 1997. p. 43; (b) C.
Bolm, O. Beckmann, and T.K.K. Luong. In Transition metals
for organic synthesis. Vol. 2. Edited by M. Beller and C. Bolm.
8 This is not the first example of sheer BINOL being a superior ligand in comparison to its 3,3>-substituted derivatives, cf.: ref. 16.
9 For other catalyses exhibiting a marked improvement when, instead of BINOL, 6,6>-dibromo-BINOL was used, see ref. 17.
© 2001 NRC Canada