J. Am. Chem. Soc. 1996, 118, 2969-2979
2969
Electrosynthesis and Characterization of Symmetrical and
Unsymmetrical Linear Porphyrin Dimers and Their Precursor
Monomers
A. Giraudeau, L. Ruhlmann, L. El Kahef, and M. Gross*
Contribution from the Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, URA
au CNRS No. 405, UniVersite´ Louis Pasteur, 4 rue Blaise Pascal, F-67000 Strasbourg, France
ReceiVed July 19, 1995. ReVised Manuscript ReceiVed January 29, 1996X
Abstract: The electrochemical synthesis of linear symmetrical octaethylporphyrin-octaethylporphyrin and unsym-
metrical tetraphenylporphyrin-octaethylporphyrin dimeric porphyrins with one viologen as a spacer and of their
precursor porphyrin monomers is reported. The mechanism of the electrochemical substitution leading to the dimeric
porphyrins is discussed. These new compounds have been characterized by 1H NMR, UV-vis spectroscopy, FAB
mass spectroscopy, and microanalysis. Electrochemical data are reported, and the redox behavior is analyzed for
the monomers and the dimers in terms of π-π interactions between the two porphyrin centers. ESR measurements
were carried out on the unsymmetrical Cu-Zn and Cu-Cu dimeric metalloporphyrins which displayed intermolecular
metal interactions.
Introduction
acceptor were covalently linked through a rigid spacer, the
electron transfer rates were enhanced via through-bond coupling.
Second, the decrease of the electron transfer rate with the
distance between the donor and the acceptor was more important
with aliphatic than aromatic spacers. For instance, poly-
(phenylene)-bridged bisporphyrin adducts5 exhibited slower
intramolecular electron transfer rates which depended little on
the increasing distance between the donor-acceptor pairs but
which reflected, instead, disruption of electronic coupling by
the twist angles at each phenyl-porphyrin connection.6 Im-
portant information on the electronic interactions between donor
and acceptor moieties in polyporphyrin molecules7,8 emerged
from correlations between their redox and optical properties.
L’Her, Collman, et al.9 demonstrated that the coupling of two
porphyrins in a cofacial configuration induced a “cofacial effect”
which originated in strong interactions between the two
π-electron ring systems. These authors were able to modulate
the extent of this “cofacial effect” by modifying the chemical
Many chemical models have been built in the past years
aimed at mimicking natural photosynthetic systems.1 Among
these, polynuclear porphyrins and phthalocyanines attracted
considerable interest owing to the wide diversity of their electron
transfer characteristics in relation with their chemical structure.2
Of these characteristics, electronic coupling between the mono-
meric subunits in supramolecules is of major interest because
of its relevance to intramolecular electron transfer in donor-
acceptor couples.3 The effects of the intervening matrix on this
electronic coupling have been scrutinized4 in molecules incor-
porating both electron donor and electron acceptor sites, and
consistent trends emerged. First, when the donor and the
X Abstract published in AdVance ACS Abstracts, March 1, 1996.
(1) (a) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. J.
Mol. Biol. 1984, 180, 385-398. (b) Deisenhofer, J.; Michel, H. Angew.
Chem., Int. Ed. Engl. 1989, 28, 829-847. (c) Boxer, S. G. Biochim. Biophys.
Acta 1983, 726, 265-292. (d) Wasielewski, M. R. Photochem. Photobiol.
1988, 47, 923-929. (e) Gust, D.; Moore, T. A. Science 1989, 244, 35-41.
(f) Huber, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 848-869. (g) Akins,
L.; Guo, C. AdV. Mater. 1994, 6, 512-516.
(5) (a) Finck, P.; Heitele, H.; Michel-Beyerle, M. E. J. Phys. Chem.
1988, 92, 6584-6590. (b) Miller, J. R.; Beitz, J. J. Chem. Phys. 1981, 74,
6746-6756.
(2) (a) Bixon, M.; Fajer, J.; Feher, G.; Freed, J. H.; Gamliel, D.; Hoff,
A. J.; Levanon, H.; Mo¨bius, K.; Nechushtai, R.; Norris, J. R.; Scherz, A.;
Sessler, J. L.; Stehlik, D. Isr. J. Chem. 1992, 32, 449-467. (b) Miller, J.
R.; Beitz, J. V.; Huddleston, R. K. J. Am. Chem. Soc. 1984, 106, 5057-
5068. (c) Penfield, K. W.; Miller, J. R.; Paddon-Row, M. N.; Cotsaris, E.;
Oliver, A. M.; Hush, N. S. J. Am. Chem. Soc. 1987, 109, 5061-5065. (d)
Closs, G. L.; Miller, J. R. Science 1988, 240, 440-447. (e) Oevering, H.;
Verhoeven, J. W.; Paddon-Row, M. N.; Costaris, E.; Hush, N. S. Chem.
Phys. Lett. 1988, 143, 488-495. (f) Schwartz, F. P.; Gouterman, M.;
Muljiani, Z.; Dolphin, D. Bioinorg. Chem. 1972, 2, 1-32. (g) Heitele, H.;
Michel-Beyerle, M. E. J. Am. Chem. Soc. 1985, 107, 8286-8288.
(3) (a) Closs, G.; Calcaterra, L.; Green, N.; Penfield, K.; Miller, J. R.
J. Phys. Chem. 1986, 90, 3673-3683. (b) Warman, J.; Haas, M.; Paddon-
Row, M. N.; Costaris, E.; Hush, N.; Verhoeven, J. Nature 1986, 320, 615.
(c) Sessler, J. L.; Johnson, M. R.; Lin, T. Y.; Creager, S. J. Am. Chem.
Soc. 1988, 110, 3659-3661. (d) Sessler, J. L.; Johnson, M. R.; Creager, S.
E.; Fettinger, J. C.; Ibers, J. A. J. Am. Chem. Soc. 1990, 112, 9310-9329.
(e) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1995, 117,
704-714. (f) Brun, A. M.; Harriman, A.; Heitz, V.; Sauvage, J. P. J. Am.
Chem. Soc. 1991, 113, 8657-8663. (g) Brun, A. M.; Atherton, S. J.;
Harriman, A.; Heitz, V.; Sauvage, J. P. J. Am. Chem. Soc. 1992, 114, 4632-
4639.
(6) (a) Helms, A.; Heiler, D.; McLendon, G. J. Am. Chem. Soc. 1992,
114, 6227-6238. (b) Helms, A.; Heiler, D.; Mc Lendon, G. J. Am. Chem.
Soc. 1991, 113, 4325-4327. (c) Mc Lendon, G. Acc. Chem. Res. 1988, 21,
160-167.
(7) (a) Hemdrecher, H. K.; Lu¨dtke, K. Tetrahedron 1993, 42, 9489-
9494. (b) Pandey, R. K.; Forsyth, T. P.; Gerzevske, K. R.; Lin, J. J.; Smith,
K. M. Tetrahedron Lett. 1992, 33, 5315-5318. (c) Hammel, D.; Eak, P.;
Schuler, B.; Heinze, J.; Mu¨len, K. AdV. Mater. 1992, 4, 737-739. (d) Lin,
V. S.-Y.; Di Magno, S. G.; Therien, M. J. Science 1994, 264, 1105-1111.
(e) Anderson, H. L. Inorg. Chem. 1994, 33, 972-981. (f) Anderson, S.;
Anderson, H. L.; Sanders, J. K. M. Acc. Chem. Res. 1993, 26, 469-475.
(g) Cosper, J. J.; Ali, M. J. Chem. Soc., Chem. Commun. 1994, 1707-
1708. (h) Arnold, D. P.; Heath, G. A. J. Am. Chem. Soc. 1993, 115, 12197-
12198. (i) Arnold, D. P.; Nitschinck, L. J. Tetrahedron Lett. 1993, 34, 693-
696. (j) Crossley, M. J.; Burn, P. L. J. Chem. Soc., Chem. Commun. 1991,
1569-1571. (k) Lu¨, T. X.; Reimers, J. R.; Crossley, M. J.; Hush, N. S. J.
Phys. Chem. 1994, 98, 11878-11884.
(8) (a) Osuka, A.; Nagata, T.; Maruyama, K. Chem. Lett. 1991, 1687-
1690. (b) Tamiaki, H.; Suzuki, S.; Maruyama, K. Bull. Chem. Soc. Jpn.
1993, 66, 2633-2697. (c) Osuka, A.; Nakajima, S.; Maruyama, K.; Mataga,
N.; Asahi, T.; Yamazaki, I.; Nishimura, Y.; Ohno, T.; Nazaki, K. J. Am.
Chem. Soc. 1993, 115, 4577-4589. (d) Osuka, A.; Kobayashi, F.;
Maruyama, K.; Mataga, N.; Asahi, T.; Okada, T.; Yamazaki, I.; Nishimura,
Y. Chem. Phys. Lett. 1993, 201, 223-228.
(4) (a) Osuka, A.; Furuta, H.; Maruyama, K. Chem. Lett. 1986, 479-
482. (b) Osuka, A.; Maruyama, K.; Hirayama, S. Tetrahedron 1989, 45,
4815-4830. (c) Osuka, A.; Maruyama, K.; Mataga, N.; Asahi, T.;
Yamazaki, I.; Tamai, N. J. Am. Chem. Soc. 1990, 112, 4958-4959.
(9) Le Mest, Y.; L’Her, M.; Hendricks, N. H.; Kim, K.; Collman, J. P.
Inorg. Chem. 1992, 31, 835-847.
0002-7863/96/1518-2969$12.00/0 © 1996 American Chemical Society