10.1002/chem.202000268
Chemistry - A European Journal
FULL PAPER
GPC as well as experimental details and related characterization results
are also shown in Supporting information.
To confirm the above modular functionalization, this process
was tracked by FT-IR and 1H NMR. As indicated in Figure S13a,
the disappearance in FT-IR of peak at 2116 nm-1 assigned to Si-
H groups indicated a complete addition in PVPDMS blocks. By
1
comparison in H NMR, the double bonds in PB blocks were
Acknowledgements
consumed, but PB LC blocks showed a low grafting density
served as a local-crosslinking point for good processability.
According to the design in Figure 4, PVPDMS blocks had an
almost 100% grafting density, where (PVPDMS-g-LC1)-b-PB had
50%/70% moles of Azo-Alkynyl (LC1), low density of ACA as
photo-croslinkers, and low local-crosslinking density.
Thankful for the financial support of the National Natural Science
Foundation of China (No. 21805025, No. 21674017) and
National Key R&D Program of China (2017YFB0307101) and
Fundamental Research Funds for the Central Universities
DUT19RC (4)001.
The properties of local-crosslinked LCNs were further idetified
by POM and DSC analysis. As seen in POM observations in
Figure S13b, LCNs presented the morphological textures of LCs
upon heating and cooling. More importantly, LCNs with well-
designed compositions showed room temperature Tg
(Tg=27~30 °C) and well-controlled Ti values (Ti=78~102 °C) for
easily processable conditions (Figure 4b). These results
confirmed the design of local-crosslinked LCNs by applying the
principle of building “blocks”and modular functionalization.
This design provides a new principle for designing local-
crosslinked LCNs, which is of both fundamental interest and
potential implications.
Keywords: Living Anionic Polymerization • Liquid Crystal Block
Copolymers • Building “Blocks” • Modular Functionalization •
Hydrosilylation
[1]
[2]
a) E. Elacqua, A. Croom, K. B. Manning, S. K. Pomarico, D. Lye, L.
Young, M. Weck, Angew. Chem. Int. Ed. 2016, 55, 15873-15878; b) Y.
Wang, H. Xu, X. Zhang, Adv. Mater. 2009, 21, 2849-2864.
a) P. Deshmukh, M. Gopinadhan, Y. Choo, S. K. Ahn, P. W. Majewski,
S. Y. Yoon, O. Bakajin, M. Elimelech, C. O. Osuji, R. M. Kasi, ACS
Macro Lett. 2014, 3, 462-466; b) F. Liao, L. Y. Shi, L. C. Cheng, S. Lee,
R. Ran, K. G. Yager, C. A. Ross, Nanoscale 2019, 11, 285-293; c) M.
Komura, A. Yoshitake, H. Komiyama, T. Iyoda, Macromolecules 2015,
48, 672-678; d) H. L. Xu, J. Bijleveld, M. Hedge, T. Dingemans, Polym.
Chem. 2019, 10, 5052-5069; e) M. Petr, B. A. Katzman, W. DiNatale, P.
T. Hammond, Macromolecules 2013, 46, 2823-2832; f) S. Nagano, Y.
Koizuka, T. Murase, M. Sano, Y. Shinohara, Y. Amemiya, T. Seki,
Angew. Chem. Int. Ed. 2012, 51, 5884-5888.
Conclusion
In summary, LCBCPs with modular functionalization have been
designed by the principle of building “blocks”, where Azo-Alkynyl
(LC1) and Azo-SiH (LC2) were independently and site-selectively
incorporated into PVPDMS-b-PBs and PS-b-PBs in combination
with LAP and hydrosilylation. The cooperative and independent
influence of modular functionalization on mesophase and
microphase separation was demonstrated. At first, PB LC blocks
and PVPDMS LC blocks had cooperative contributions to the
mesogenic properties and microphase separation of (PVPDMS-
g-LC1)-b-(PB-g-LC2), where polarized optical morphologies
showed a brighter order as PS-b-(PB-g-LC2) < (PVPDMS-g-
LC1)-b-PB< (PVPDMS-g-LC1)-b-(PB-g-LC2), thermal properties
were recorded as PS-b-(PB-g-LC2) (ΔT=46~47°C) < (PVPDMS-
g-LC1)-b-PB (ΔT=68~81 °C) < (PVPDMS-g-LC1)-b-(PB-g-LC2)
(ΔT=85~102 °C), and the microphase separated microdomain
diameters showed an order as PS-b-(PB-g-LC2) <(PVPDMS-g-
LC1)-b-(PB-g-LC2)<(PVPDMS-g-LC1)-b-PB. Secondly, PB LC
blocks and PVPDMS LC blocks showed their independence in
(PVPDMS-g-LC1)-b-(PB-g-LC2) because of an additional
[3]
a) H. F. Yu, Prog. Polym. Sci. 2014, 39, 781-815; b) H. B. Pan, W.
Zhang, A. Q. Xiao, X. L. Lyu, P. P. Hou, Z. H. Shen, X. H. Fan, Polym.
Chem. 2019, 10, 991-999; c) L. Y. Shi, F. Liao, L. C. Cheng, S. H. Lee,
R. Ran, Z. H. Shen, C. A. Ross, ACS Macro Lett. 2019, 8, 852-858; d)
K. Yuan, L. Chen, Y. W. Chen, J. Mater. Chem. C 2014, 2, 3835-3845;
e) T. J. Wang, X. Li, Z. J. Dong, S. Huang, H. F. Yu, ACS Appl. Mater.
Interfaces 2017, 9, 24864-24872.
[4]
[5]
a) F. Zhou, K. H. Gu, Z. Y. Zhang, M. Y. Zhang, S. Zhou, Z. H. Shen, X.
H. Fan, Angew. Chem. Int. Ed. 2016, 55, 15007-15011; b) Z. Z. Tong, Y.
M. Li, H. A. Xu, H. Chen, W. J. Yu, W. Q. Zhuo, R. K. Zhang, G. H.
Jiang, ACS Macro Lett. 2016, 5, 867-872.
a) I. E. Serhatli, T. Kacar, J. Appl. Polym. Sci. 2006, 99, 3187-3194; b)
F. Yilmaz, F. Kasapoglu, Y. Hepuzer, Y. Yagci, L. Toppare, E. G.
Fernandes, G. Galli, Des. Monomers Polym. 2005, 8, 223-236; c) G. P.
Mao, J. G. Wang, S. R. Clingman, C. K. Ober, J. T. Chen, E. L. Thomas,
Macromolecules 1997, 30, 2556-2567; d) J. Sanger, W. Gronski,
Macromol. Chem. Phys. 1998, 199, 555-561.
[6]
[7]
a) N. I. Boiko, M. A. Bugakov, E. V. Chernikova, A. A. Piryazev, Y. I.
Odarchenko, D. A. Ivanov, V. P. Shibaev, Polym. Chem. 2015, 6, 6358-
6371; b) A. Zenati, S. Thammalangsy, J. Polym. Sci., Part A: Polym.
Chem. 2018, 56, 1617-1629; c) J. Q. Jin, M. J. Tang, Z. H. Zhang, K.
Zhou, Y. Gao, Z. G. Zheng, W. A. Zhang, Polym. Chem. 2018, 9, 2101-
2108; d) B. Mu, X. Li, K. Y. Chen, Y. M. Zeng, J. L. Fang, D. Z. Chen, J.
Polym. Sci., Part A: Polym. Chem. 2017, 55, 2544-2553.
Ts=57
°C
observed
in
(PVPDMS-g-LC1)-b-(PB-g-LC2)
determined using powder X-rays analysis of LCBCPs and
charactering the mixtures of PVPDMS3k-g-LC1 and PB6k-g-LC2.
Thirdly, DSC results and SAXS profiles provided convincing
microstructural evidence for the phase separation of LCBCPs.
More importantly, by applying the principle of building“blocks”
and modular functionalization, local-crosslinked LCNs were
obtained and showed room temperature Tg and well-controlled Ti
values (Ti=78~102 °C) for easily processable conditions by
controlling molecular compositions.
a) Y. Choo, L. H. Mahajan, M. Gopinadhan, D. Ndaya, P. Deshmukh, R.
M. Kasi, C. O. Osuji, Macromolecules 2015, 48, 8315-8322; b) Y. Zhu,
Y. Q. Zhou, Z. Chen, R. Lin, X. G. Wang, Polymer 2012, 53, 3566-
3576; c) X. F. Chen, Z. H. Shen, X. H. Wan, X. H. Fan, E. Q. Chen, Y.
G. Ma, Q. F. Zhou, Chem. Soc. Rev. 2010, 39, 3072-3101; d) Y. Liu, W.
Wei, H. M. Xiong, Polym. Chem. 2015, 6, 583-590; e) Y. C. Xu, C. M.
Dong, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1216-1225; f) M.
Huo, Z. Y. Wan, M. Zeng, Y. Wei, J. Y. Yuan, Polym. Chem. 2018, 9,
3944-3951.
[8]
a) L. Han, H. W. Ma, S. Q. Zhu, P. B. Liu, H. Y. Shen, L. C. Yang, R.
Tan, W. Huang, Y. Li, Macromolecules 2017, 50, 8334-8345; b) M.
Yamada, T. Iguchi, A. Hirao, S. Nakahama, J. Watanabe,
Macromolecules 1995, 28, 50-58; c) M. Walther, H. Faulhammer, H.
Finkelmann, Macromol. Chem. Phys. 1998, 199, 223-237.
Experimental Section
The materials used in the experiment and the characterizations are
shown in Supporting Information. In addition, synthetic routes and related
1
characterization results including H NMR, FT-IR, DSC, X-ray, POM and
7
This article is protected by copyright. All rights reserved.