10.1002/anie.201707362
Angewandte Chemie International Edition
COMMUNICATION
ESI mass spectrometry. Sample solutions were injected into the ESI
source of a micrOTOF-Q II instrument (Bruker Daltonik)[21] at a typical
flow rate of 8 μL min−1. The ESI source was operated with a voltage of
3500 V and N2 as nebulizer gas (flow rate of 5 L min−1) and drying gas
(0.7 bar backing pressure, temperature of 333 K). In simple MS1
experiments, all generated ions with 50 ≤ m/z ≤ 3000 were allowed to
pass the quadrupole mass filter of the instrument. In MS2 fragmentation
experiments, ions of interest were mass-selected in the quadrupole-mass
filter, accelerated to a kinetic energy ELAB, and allowed to collide with N2
gas. Residual parent ions and resulting fragment ions were then detected
after passage through the TOF analyzer. Typically, accuracies of the
measured m/z ratios of 25 ppm were achieved (external calibration with a
mixture of CF3COOH and phosphazenes in H2O/CH3CN). Theoretical
exact m/z ratios and isotope patterns were calculated with the
DataAnalysis software package (Bruker Daltonik).
A. Jutand, H. Tanaka, Q. Ren, S. Torii, Chem. Eur. J. 1996, 2, 957-966;
d) C. Amatore, A. Jutand, J. Organomet. Chem. 1999, 576, 254-278; e)
C. Amatore, A. Jutand, Acc. Chem. Res. 2000, 33, 314-321.
[4] a) C. Amatore, A. Jutand, F. Lemaitre, J. L. Richard, S. Kozuch, S.
Shaik, J. Organomet. Chem. 2004, 689, 3728-3734; b) S. Verbeeck, C.
Meyers, P. Franck, A. Jutand, B. U. W. Maes, Chem. Eur. J. 2010, 16,
12831-12837; c) C. Amatore, A. Jutand, G. Le Duc, Angew. Chem.
2012, 124, 1408-1411; Angew. Chem. Int. Ed. 2012, 51, 1379-1382.
[5] For an early report of Pd0 ate complexes, see: E. Negishi, T. Takahashi,
K. Akiyoshi, J. Chem. Soc., Chem. Commun. 1986, 1338-1339.
[6] P. Espinet, A. M. Echavarren, Angew. Chem. 2004, 116, 4808-4839;
Angew. Chem. Int. Ed. 2004, 43, 4704-4734.
[7] J. G. de Vries, Dalton Trans. 2006, 421-429.
[8] A. H. M. de Vries, F. J. Parlevliet, L. Schmieder-van de Vondervoort, J.
H. M. Mommers, H. J. W. Henderickx, M. A. M. Walet, J. G. de Vries,
Adv. Synth. Catal. 2002, 344, 996-1002.
Electrical conductivity measurements. Electrical conductivity
measurements were performed with a SevenMulti instrument (Mettler
Toledo) and a stainless steel-electrode cell (InLab741, Mettler Toledo,
[9] M. Kalek, J. Stawinski, Organometallics 2007, 26, 5840-5847.
[10] A. Seyboldt, B. Wucher, S. Hohnstein, K. Eichele, F. Rominger, K. W.
Törnroos, D. Kunz, Organometallics 2015, 34, 2717-2725.
κ
cell = 0.1 cm−1). The instrument was calibrated against a 0.1-M solution
of aqueous KCl.
[11] S. Kozuch, S. Shaik, A. Jutand, C. Amatore, Chem. Eur. J. 2004, 10,
3072-3080.
[12] L. J. Goossen, D. Koley, H. L. Hermann, W. Thiel, Organometallics
2005, 24, 2398-2410.
NMR spectroscopy. NMR spectra were recorded with a Jeol EX 400
Eclipse instrument or with a Bruker Avance III 400 instrument operating
at 161.997 MHz (31P) or 376.548 MHz (19F). The chemical shifts are
given relative to 85% H3PO4 or CFCl3, respectively.
[13] a) L. J. Gooßen, D. Koley, H. Hermann, W. Thiel, Chem. Commun.
2004, 2141-2143; b) L. J. Goossen, D. Koley, H. Hermann, W. Thiel, J.
Am. Chem. Soc. 2005, 127, 11102-11114.
[14] For recent mass spectrometric studies of Pd-mediated reactions, see:
a) K. L. Vikse, M. A. Henderson, A. G. Oliver, J. S. McIndoe, Chem.
Commun. 2010, 46, 7412-7414; b) M. A. Schade, J. E. Fleckenstein, P.
Knochel, K. Koszinowski, J. Org. Chem. 2010, 75, 6848-6857; c) D.
Agrawal, D. Schröder, C. M. Frech, Organometallics 2011, 30, 3579-
3587; d) K. L. Vikse, Z. Ahmadi, C. C. Manning, D. A. Harrington, J. S.
McIndoe, Angew. Chem. 2011, 123, 8454-8456; Angew. Chem. Int. Ed.
2011, 50, 8304-8306; e) K. L. Vikse, G. N. Khairallah, R. A. J. O’Hair,
Organometallics 2012, 31, 7467-7475; f) M. J. Woolley, G. N.
Khairallah, G. da Silva, P. S. Donnelly, B. F. Yates, R. A. J. O’Hair,
Organometallics 2013, 32, 6931-6944; g) K. Vikse, T. Naka, J. S.
McIndoe, M. Besora, F. Maseras, Chem. Cat. Chem. 2013, 5, 3604-
3609; h) J. Hývl, J. Roithová, Org. Lett. 2014, 16, 200-203; i) K. Böck, J.
E. Feil, K. Karaghiosoff, K. Koszinowski, Chem. Eur. J. 2015, 21, 5548-
5560; j) Z. Ahmadi, L. P. E. Yunker, A. G. Oliver, J. S. McIndoe, Dalton
Trans. 2015, 44, 20367-20375; k) M. Kolter, K. Koszinowski, Chem. Eur.
J. 2016, 22, 15744-15750; l) E. Janusson, H. S. Zijlstra, P. P. T.
Nguyen, L. MacGillivray, J. Martelino, J. S. McIndoe, Chem. Commun.
2017, 53, 854-856.
Acknowledgements
We thank Professor Herbert Mayr for his generous support and
gratefully acknowledge funding from the CaSuS (Catalysis for
Sustainable Synthesis) program (scholarship for M. K.).
Keywords: cross-coupling • mass spectrometry • palladium •
reactive intermediates • salt effects
[1] A. de Meijere, S. Bräse, M. Oestreich (Eds.), Metal-Catalyzed Cross-
Coupling Reactions and More, Wiley-VCH, Weinheim, 2014.
[2] a) T. Jeffery, J. Chem. Soc., Chem. Commun. 1984, 1287-1289; b) T.
Jeffery, Tetrahedron Lett. 1985, 26, 2667-2670; c) W. Cabri, I. Candiani,
S. DeBernardinis, F. Francalanci, S. Penco, R. Santi, J. Org. Chem.
1991, 56, 5796-5800; d) T. Jeffery, Tetrahedron 1996, 52, 10113-
10130; e) R. J. Perry, B. D. Wilson, J. Org. Chem. 1996, 61, 7482-
7485; f) T. Jeffery, Tetrahedron Lett. 1999, 40, 1673-1676; g) Z. Wang,
Z. Zhang, X. Lu, Organometallics 2000, 19, 775-780; h) Z. Zhang, X. Lu,
Z. Xu, Q. Zhang, X. Han, Organometallics 2001, 20, 3724-3728; i) K.
Fagnou, M. Lautens, Angew. Chem. 2002, 114, 26-49; Angew. Chem.
Int. Ed. 2002, 41, 26-47; j) S. T. Handy, M. Okello, Tetrahedron Lett.
2003, 44, 8395-8397; k) A. H. Roy, J. F. Hartwig, Organometallics 2004,
23, 194-202; l) P. M. Maitlis, A. Haynes, B. R. James, M. Catellani, G. P.
Chiusoli, Dalton Trans. 2004, 3409-3419; m) S. P. H. Mee, V. Lee, J. E.
Baldwin, Chem. Eur. J. 2005, 11, 3294-3308; n) I. J. S. Fairlamb, R. J.
K. Taylor, J. L. Serrano, G. Sanchez, New. J. Chem. 2006, 30, 1695-
1704; o) S. Shekhar, J. F. Hartwig, Organometallics 2007, 26, 340-351;
p) B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 79-81; q)
F. Proutiere, F. Schoenebeck, Angew. Chem. 2011, 123, 8342-8345;
Angew. Chem. Int. Ed. 2011, 50, 8192-8195; r) Y. Lei, R. Zhang, L. Wu,
Q. Ou, H. Mei, G. Li, J. Mol. Catal. A 2014, 392, 105-111.
[15] A. Faulkner, J. F. Bower, Angew. Chem. 2012, 124, 1707-1711; Angew.
Chem. Int. Ed. 2012, 51, 1675-1679.
[16] A. Jakab, Z. Dalicsek, T. Holczbauer, A. Hamza, I. Pápai, Z. Finta, G.
Timári, T. Soós, Eur. J. Org. Chem. 2015, 60-66.
[17] Anions bearing perfluorinated alkyl groups are well-known to exhibit
high ESI activities, see: E. Psillakis, J. Cheng, M. R. Hoffmann, A. J.
Colussi, J. Phys. Chem. A 2009, 113, 8826-8829; correction: ibid., 9050.
[18] For the experiment with Li(OAc), a 1:1 mixture of THF and MeOH had
to be used to achieve sufficient solubility.
[19] a) Z. Chen, M. Hojo, J. Phys. Chem. B 1997, 101, 10896-10902; b) D.
Das, J. Solution Chem. 2008, 37, 947-955; c) J. E. Fleckenstein, K.
Koszinowski, Organometallics 2011, 30, 5018-5026.
[20] For recent studies of other PdII ate complexes, see: a) D. Guest, V. H.
Menezes da Silva, A. P. de Lima Batista, S. M. Roe, A. A. C. Braga, O.
Navarro, Organometallics 2015, 34, 2463-2470; b) C. C. C. Johansson
Seechurn, T. Sperger, T. G. Scrase, F. Schoenebeck, T. J. Colacot, J.
Am. Chem. Soc. 2017, 139, 5194-5200; c) F. Schroeter, J. Soellner, T.
Strassner, ACS Catal. 2017, 7, 3004-3009.
[3] a) C. Amatore, M. Azzabi, A. Jutand, J. Am. Chem. Soc. 1991, 113,
8375-8384; b) C. Amatore, E. Carré, A. Jutand. M. A. M’Barki, G.
Meyer, Organometallics 1995, 14, 5605-5614; c) C. Amatore, E. Carré,
[21] K. Koszinowski, F. Lissy, Int. J. Mass Spectrom. 2013, 354/355, 219-
228.
This article is protected by copyright. All rights reserved.