Nonionic Analogs of RNA with Dimethylene Sulfone Bridges
J. Am. Chem. Soc., Vol. 118, No. 19, 1996 4529
(4:1:saturated)): δ 0.99 (s, 9H, CH3-tBu); 1.86, 2.01 (2m, 2 × 2H,
H-5′); 2.24 (s, 3H, Ac); 2.37 (m, 1H, H-3′); 2.69 (m, 1H, H-3′); 2.91
(d, 2H, J ) 7.4 Hz, H-3′′); 3.18, 3.30 (2m, 2H, H-6′-U); 3.65 (m, 2H,
H-3′′); 3.82 (m, 2H, H-6′-A); 3.98 (dt, 1H, J ) 2.0, 10.0 Hz, H-4′);
4.18 (d, 1H, J ) 3.5 Hz, H-2′-U); 4.24 (dt, 1H, J ) 2.2, 10.0 Hz,
H-4′); 4.70 (dd, 1H, J ) 5.2 Hz, H-2′-A); 5.52 (s, 1H, H-1′-U); 5.60
(d, 1H, J ) 8.0 Hz, H-5-U); 6.00 (s, 1H, H-1′-A); 7.27-7.57 (m, 10H,
H-6-U, m,p-Ph, m,p-Bz); 7.58 (2 AA′BB′C systems, 2 AA′ parts, 4H,
o-Ph); 7.99 (AA′BB′C system, AA′ part, 2H, o-Bz); 8.04 (s, 1H, H-8-
A); 8.66 (s, 1H, H-2-A). FABMS: m/z 1020 (M + Na+). For the
related conversion of 35, see the supporting information.
Dimer Alcohol 40. Compound 34 (455 mg, 0.33 mmol) was
dissolved in pyridine (46 µL) in a 10 mL polypropylene tube under Ar
and treated with HF/pyridine (319 µL, 1.64 mmol of a 5.2 M solution)
for 14 h at RT. Methoxytrimethylsilane (0.45 mL, 3.28 mmol) was
added. The mixture was stirred (5 min), transferred (CH2Cl2 wash) to
a glass flask, and concentrated in Vacuo. The oily foam was
chromatographed (silica gel, 32 g, gradient of CH2Cl2/MeOH/acetone
(92:6:2 to 9:1:0)) to yield 40 as a foam (339 mg, 90%). 1H NMR
(500 MHz, CDCl3): δ 1.151-1.197 (m ) 4 × d, 12H, 2 × CH(CH3)2);
1.866-1.962 (m, 2H, 2 × H-5′-G1); 2.39-2.47 (m, 1H, H-5′-G2);
2.53-2.730 (m, 3H, H-5′-G2, CH(CH3)2-G2, CH(CH3)2-G1); 3.23-
3-31 (m, 5H, H-3′′-G1, H-3′-G1, OCH2CH2Ar, C-6′-OH); 3.33-3.464
(m, 2H, H-6′-G2, H-3′-G2); 3.58-3.66 (m, 1H, H-6′-G2); 3.70-3.811
(m, 3H, 2 × H-6′-G1, H-3′′-G1); 4.346-4.383 (m, 1H, H-4′-G1); 4.43-
4.491 (m, 2H, H-4′-G2, H-3′′-G2) 4.556-4.592 (m, 1H, H-3′′-G2);
4.730-4.797 (m, 2H, OCH2CH2Ar); 4.80-4.85 (m, 1H, H-2′-G1);
5.788 (d, J ) 2.7 Hz, 1H, H-1′-G1); 5.842 (br s, 1H, C-2′-G1-OH);
5.948 (d, J ) 2.7 Hz, 1H, H-1′-G2); 5.995 (dd, J ) 2.8, 6.3 Hz, 1H,
H-2′-G2); 7.28-7.41 (m, 4H, 4 × m-Bz); 7.42-7.50 (m, 3H, p-Bz,
AA′BB′ system, AA′ part, 2H, 2 × o-PhNO2); 7.52-7.57 (m, 1H,
p-Bz); 7.777 (s, 1H, H-8-G2); 7.84-7.94 (2 × AA′BB′C system, 2 ×
AA′ part, 4H, 4 × o-Bz); 7.963 (s, 1H, H-8-G1); 8.114-8.149 (m,
2H, AA′BB′ system, BB′ part, 2H, 2 × m-PhNO2); 8.351 (s, 1H, N2-
H-G1); 9.82 (br s, 1H, N2-H-G2); 12.21 (br s, 1H, N1-H-G2).
FABMS: m/z 1151 (M + H+). For the related conversion of 33, see
the supporting information.
Dimer Bromide 41. A mixture of 39 (50.8 mg, 54 µmol) and PPh3
(28.1 mg, 107 µmol) in CH3CN (3 mL) was mixed with a solution of
CBr4 (42.6 mg, 129 µmol) in CH3CN (0.5 mL) at RT. The solution
became yellow after a few minutes. After 90 min, the solution was
added to a mixture of saturated bicarbonate (15 mL), ice (10 g), and
CH2Cl2 (100 mL). The organic layer was separated and the aqueous
layer reextracted four times with CH2Cl2. The combined organic layers
were concentrated and dried (high vacuum). The residue was applied
to a silica (57 g) column. Elution with EtOAc/CH2Cl2/THF (75:25:
10, 300 mL) and then CH2Cl2/EtOAc (83:17, and a MeOH gradient of
4% to 8%) yielded 41 (47.0 mg, 46.4 µmol, 86%) as a colorless foam.
1H NMR (300 MHz, CDCl3): δ 2.19 (s, 3H, Ac); 2.31 (m, 3H, 2 ×
H-5′-A, H-5′-U); 2.58 (m, 1H, H-5′-U); 3.10 (dd, 1H, H-3′′-A); 3.12
(m, 1H, H-3′); 3.45 (m, 5H, H-3′, H-3′′-A, 3 × H-6′); 3.87 (m, 1H,
H-6′); 4.28 (quint, 1H, H-4′); 4.39 (m, 1H, H-4′); 4.52, 4.69 (2dd, 2H,
H-3′′-U); 5.41 (d, 1H, J ) 1.9 Hz, H-1′-U); 5.70 (dd, 1H, J ) 1.9, 7.9
Hz, H-5-U); 5.80 (dd, 1H, J ) 1.9, 7.2 Hz, H-2′-U); 5.85 (d, 1H, J )
5.3 Hz, H-2′-A); 6.05 (s, 1H, H-1′-A); 7.21 (d, 1H, J ) 8.1 Hz, H-6-
U); 7.38-7.63 (m, 9H, o,m-Bz) 7.98 (2 AA′BB′C systems, 2 AA′ parts,
4H, o-OBz); 8.09 (AA′BB′C system, AA′ part ) d, 2H, J ) 7.2 Hz,
o-NBz); 8.15 (s, 1H, H-8-A); 8.79 (s, 1H, H-2-A); 9.53 (br s, 1H, NH);
10.13 (br s, 1H, NH). FABMS: m/z 1038/1040 (M + Na+). For the
related conversions of 40, see the supporting information.
Tetramer Thioether 43. Compound 38 (83.3 mg, 84 µmol),
compound 42 (92 mg, 76 µmol), and Cs2CO3 (149 mg, 456 µmol) were
dried (high vacuum, 50 °C) and pulverized with a stirring bar. THF
(30 mL) was added under stirring, and after 11 h the solvent was
removed from the slurry in Vacuo. Acetate buffer (0.28 mL) and 2/3
saturated brine (9 mL) were added, and the mixture was extracted 5×
with CH2Cl2. The organic layers were concentrated and the residue
chromatographed (50 g of silica, CH2Cl2 and a 2-propanol gradient of
3% to 0% with a concurrent MeOH gradient of 3% to 12.5%) to yield
42 (5.5 mg, 4.5 µmol), AU-2′,3′′-diacetate (7.4 mg, 7 µmol), 43 (57
mg, 27 µmol, 36%), the U2-2′-alcohol tetramer (20.8 mg, 10 µmol,
13%), and a mixture of both tetrameric species (30.5 mg, 14 µmol,
18%). The combined yield of tetramers was 67% (71% based on
recovered bromide). A reaction on a 0.1-fold scale gave a 76%
combined yield of tetramers. 1H NMR (500 MHz, DMSO-d6): δ 0.95
(s, 9H, CH3-tBu); 1.06 (m, 12H, CH3-iBu); 1.93 (3H), 2.00 (1H), 2.14-
2.37 (4H), 2.44 (1H) (4m, 8 × H-5′, H-3′); 2.51-2.70 (m, 4H, 2 ×
H-6′-G3, 2 × H-3′′-U); 2.74, 2.85 (2m, 2H, CH-iBu); 2.97 (m, 2H,
H-3′-A, H-3′-G4); 3.26-3.39 (partly under H2O), 3.40-3.58 (6H) (2m,
CH2-NPE, 2 × H-6′-U, 2 × H-6′-G4, H-3′-G4, 2 × H-3′′-A, 2 × H3′′-
G3); 3.77 (m, 2H, 2 × H-6′-A); 3.90 (dt, 1H, J ) 2.2, 8.9 Hz, H-4′);
4.01 (dt, 1H, J ) 2.7, 8.9 Hz, H-4′); 4.16 (dt, 1H, J ) 2.1, 9.2 Hz,
H-4′); 4.34 (br s, 1H, OH); 4.51 (dt, 1H, J ) 2.8, 8.3 Hz, H-4′-G4);
4.57 (dd, 1H, H-3′′-G4); 4.67 (m, 2H, H-3′′-G4, H-2′-A); 4.78 (m, 3H,
H-2′-G3, CH2-NPE); 5.31 (dd, 1H, J ) 2.2, 6.3 Hz, H-2′-U); 5.63 (d,
1H, J ) 8.0 Hz, H-5-U); 5.65 (d, 1H, J ) 2.4 Hz, H-1′-U); 5.88 (d,
1H, J ) 2.0 Hz, H-1′-G3); 6.03 (s, 1H, H-1′-A); 6.04 (dd, partly hidden,
J ) 1.8 Hz, H-2′-G4); 6.14 (d, 1H, J ) 2.1 Hz, H-1′-G4); 6.23 (br s,
1H, OH); 7.27-7.52 (10H), 7.54-7.62 (7H); 7.63-7.68 (5H) (3m,
H-6-U, 3 × m,p-Bz, 2 × o,m,p-Ph, 2 × o-NPE); 7.91, 7.97 (2 AA′BB′C
systems, 2 AA′ parts, 2 × 2H, o-OBz); 8.05 (AA′BB′C system, AA′
part, 2H, o-Bz-A); 8.17 (AA′BB′ system, BB′ part, 2H, m-NPE); 8.26
(s, 1H, H-8-G); 8.34 (s, 1H, H-8-G); 8.55 (s, 1H, H-8-A); 8.70 (s, 1H,
H-2-A); 10.32 (br s, 1H, NH); 11.4 (br s, ca. 3H, NH); 12.4 (very br
s, 1H, NH). FABMS: m/z 2152 (M + Na+). For the related conversion
of 37/41, see the supporting information.
Tetramer Sulfone 46. Following the procedure and general workup
used for 34, 44 (86.0 mg, 45.5 µmol) was reacted for 3 h with Oxone
(112 mg, 192 µmol) and NaOAc (49.3 mg, 600 µmol) in a mixture of
MeOH (25 mL), THF (10 mL), and water (5 mL). The residue was
filtered over silica, and 46 (87.2 mg, 45 µmol, 99%) was isolated as a
colorless foam. 1H NMR (300 MHz, CDCl3/CD3OD/D2O (3:1:
saturated)): δ 0.94 (s, 9H, CH3-tBu); 1.69 (2H); 1.90 (2H), 2.09 (3H),
2.32 (3H) (4m, 8 × H-5′, 2 × H-3′); 2.00, 2.05 (2s, 2 × 3H, 2 ×
COCH3); 2.73 (d, 1H, J ) 12.8 Hz, H-3′′); 2.98-3.42 (9H), 3.43-
3.68 (3H), 3.69-3.81 (3H) (3m, 2 × H-3′, 5 × H-3′′, 8 × H-6′), 3.88
(m, 1H, H-4′); 4.04 (dt, 1H, J ) 2.5, 8.8 Hz, H-4′); 4.13 (dt, 1H, J )
2, 9 Hz, H-4′); 4.27 (m, 1H, H-4′); 4.37 (d, 1H, J ) 5.1 Hz, H-2′-U1);
4.41, 4.53 (2dd, 2H, H-3′′-U2); 5.28 (s, 1H, H-1′-Py); 5.49 (m, 3H,
H-1′-Py, H-2′-Py, H-5-U), 5.55 (s, 1H, H-1′-Py); 5.59 (d, 1H, J ) 8.0
Hz, H-5-U); 5.73 (m, 2H, H-2′-Py, H-2′-A); 5.96 (s, 1H, H.-1′-A); 7.20
(d, 1H, J ) 8.1 Hz, H-6-U); 7.23-7.48 (m, 20H, H-6-U, H-5-C, m,p-
Ph, m,p-Bz); 7.53 (2 AA′BB′C systems, 2 AA′ parts, 4H, o-Ph); 7.62
(d, 1H, J ) 7.6 Hz, H-6-C); 7.82 (m, 6H, 6 × o-Bz); 7.94 (AA′BB′C
system, AA′ part ) d, 2H, J ) 7.2 Hz, o-Bz-A); 8.18 (s, 1H, H-8-A);
8.63 (s, 1H, H-2-A). FABMS: m/z 1963 (M + Na+). For the related
conversion of 43, see the supporting information.
Tetramer Pentaol 47. Compound 45 (62.2 mg, 29.2 µmol) was
hydrolyzed with 0.2 M LiOH (1.1 mL, 220 µmol; 65 min). The mixture
was neutralized and extracted with a mixture of CH2Cl2 and EtOH (9:
1), the solvents were removed, and the residue was chromatographed
(17 g of silica; CH2Cl2/MeOH/EtOH/water (84:7.5:7.5:1), 200 mL, and
then EtOAc/MeOH/water (76:18:3), 150 mL). Pentaol 47 (36.8 mg,
19.3 µmol, 66%) and the debenzoylated adenine side product 48 (3.3
mg, 1.8 µmol) were obtained as colorless solids. The following data
are for 47. 1H NMR (500 MHz, CDCl3/CD3OD/D2O (3:1:saturated)):
δ 1.00 (s, 9H, CH3-tBu); 1.17 (m, 12H, CH3-iBu); 1.84 (m, 1H, H-5′-
A); 2.02 (4H), 2.20-2.42 (4H), (2m, 7 × H-5′, H-3′-U); 2.52, 2.60,
2.66 (3m, 3H, 2 × CH-iBu, H-3′-A); 2.78, 2.83 (2m, 2H, 2 × H-3′-
G); 2.92 (d, 1H, J ) 12.4 Hz, H-3′′); 2.99 (m, 2H, 2 × H-6′); 3.15
(dd, 1H, J ) 2.5, 14.5 H, H-3′′); 3.21 (2H), 3.33 (3H), 3.54 (2H), 3.72
(2H) (4m, 5 × H-3′′, 4 × H-6′); 3.21 (m, 2H, CH2-NPE); 3.83 (m, 3H,
2 × H-6′-A, H-3′′-G4); 3.97 (t, 1H, J ) 8.0; H-4′); 4.16 (m, 2H, 2 ×
H-4′); 4.24 (dt, 1H, J ) 2.3, 9.7 Hz, H-4′); 4.45 (d, 1H, J ) 5.0 Hz,
H-2′-U); 4.69 (m, 4H, 2 × H-2′, CH2-NPE); 4.81 (d, 1H, J ) 5.5 Hz,
H-2′-G3); 5.44 (s, 1H, H-1′-U); 5.54 (d, 1H, J ) 8.0 Hz, H-5-U); 5.69
(s, 1H, H-1′-G); 5.88 (s, 1H, H-1′-G); 6.01 (s, 1H, H-1′-A); 7.29-
7.39 (7H), 7.45 (4H), (2m, H-6-U, m,p-Ph, m-Bz, o-NPE); 7.54
(AA′BB′C system, C part, 1H, p-Bz); 7.61 (2 AA′BB′C systems, 2
AA′ parts, 4H, o-Ph); 7.71 (br s, 1H, H-8-G4); 7.99 (s, 1H, H-8-G3);
8.01 (AA′BB′C system, AA′ part ) d, 2H, J ) 7.2 Hz, o-Bz-A); 8.06
(s, 1H, H-8-A); 8.07 (AA′BB′ system, BB′ part, 2H, m-NPE); 8.58 (s,
1H, H-2-A). FABMS: m/z 1956 (M + 2Na+ - H+). For the related
conversion of 48, see the supporting information.