BULLETIN OF THE
Note
KOREAN CHEMICAL SOCIETY
Table 4. Breaking time and methanol permeability of membranes.
Breaking
time (min)
Methanol permeability
(cm2/s)
Sample
SPEEK
7
2.8 × 10−6
1.5 × 10−7
5.3 × 10−8
3.8 × 10−8
1.0 × 10−8
2.2 × 10−6
5c-SPEEK
10c-SPEEK
15c-SPEEK
20c-SPEEK
Nafion 212
208
233
272
310
—
Research Foundation of Korea funded by the Ministry of Sci-
ence, ICT & Future Planning. This study was also supported
by the Human Resources Development program
(No. 1501001882) of the Korea Institute of Energy Technol-
ogy Evaluation and Planning (KETEP) grant funded by the
Korea government Ministry of Trade, Industry, and Energy.
Figure3. ProtonconductivitiesofSPEEKandc-SPEEKmembranes.
resulting membranes were assessed by the naked eye. The
original SPEEK membrane was broken apart into pieces
within 7 min, but the c-SPEEK membranes became so highly
oxidation-resistant that the breaking times of the c-SPEEK
membranes increased from 208 to 272 min as the DAPE load-
ing increased from 5 to 15 wt % (Table 4). This experimental
data indicate that the oxidative stability of the SPEEK mem-
brane increases with increasing DAPE loading owing to a
higher degree of crosslinking of the membrane. However,
the oxidative stabilities of the c-SPEEK membranes are lower
than those of the BVPH-derived membranes (breaking time:
33–38 h), probably due to the radical-sensitive carbonyl
groups of DAPE moiety.20
The methanol permeabilities of the membranes were meas-
ured in an aqueous 3.0 M methanol solution at 35 ꢀC, follow-
ing the reported procedure.17 The methanol permeability of
the original SPEEK membrane (2.8 × 10−6 cm2/s) was close
to that of Nafion 212, because of the high content of the sul-
fonic acid group. However, as the DAPE loading increased
from 5 to 15%, the methanol permeability decreased progres-
sively from 1.5 × 10−7 to 3.8 × 10−8 cm2/s, because of more
compact membrane structures. The degree of reduction in
themethanolpermeabilityisclosetothatoftheBVPH-derived
membranes (1.7 × 10−8 cm2/s).7
References
1. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci. 2005, 259, 10.
2. K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535.
3. C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee, Prog. Polym. Sci.
2011, 36, 1443.
4. T. Higashihara, K. Matsumoto, M. Ueda, Polymer 2009,
50, 5341.
5. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla,
J. E. McGrath, Chem. Rev. 2004, 104, 4587.
6. Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Chem. Mater. 2003,
15, 4896.
7. S. Han, M.-S. Zhang, J. Shin, Y.-S. Lee, Radiat. Phys. Chem.
2014, 97, 313.
8. J.-M.Song,J. Shin, J.-Y. Sohn, Y. C.Nho, Macromol. Res. 2011,
19, 1082.
9. J.-M. Song, D. W. Shin, J.-Y. Sohn, Y. C. Nho, Y. M. Lee,
J. Shin, J. Membr. Sci. 2013, 430, 87.
10. S. Han, M.-S. Zhang, J. Shin, Y.-S. Lee, J. Appl. Polym. Sci.
2014, 131, 40695.
11. N. Zhang, G. Zhang, D. Xu, C. Zhao, W. Ma, H. Li, Y. Zhang,
S. Xu, H. Jiang, H. Sun, H. Na, Int. J. Hydrogen Energ. 2011, 36,
11025.
In summary, DAPE was successfully synthesized in a mod-
erately high isolated yield and used for the crosslinking of the
SPEEK membranes via electron beam irradiation. The c-
SPEEK membranes exhibited significantly improved dimen-
sional and oxidative stability, methanol permeability, and
mechanical strength with the decrease in the elongation at
break. The proton conductivities of the c-SPEEK membranes
were lower than those of the SPEEK membrane, but were still
comparable to that of Nafion 212. This study indicates that
DAPE can be very easily synthesized in a large quantity and
conveniently used as a nonhydrolizable crosslinking agent
for the preparation of crosslinked ionic aromatic polymer
membranes.
12. S. L. N. H. Rhoden, C. A. Linkous, N. Mohajeri, D. J. Díaz,
P. Brooker, D. K. Slattery, J. M. Fenton, J. Membr. Sci. 2011,
376, 290.
13. D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, Y. M. Lee, Macromol.
Rapid Commun. 2009, 30, 64.
14. H. Hou, M. L. Di Vona, P. Knauth, J. Membr. Sci. 2012,
423–424, 113.
15. J. L. Sanchez, Doctoral Thesis, University of Texas, Austin,
TX, 2003.
16. J.-P. Tortai, R. Marechal, Bull. Soc. Chim. Fr. 1971, 1000.
17. E.-B. Lee, J. Shin, Y.-S. Lee, Macromol. Res. 2014, 22, 1090.
18. M. Han, G. Zhang, K. Shao, H. Li, Y. Zhang, M. Li, S. Wang,
H. Na, J. Mater. Chem. 2010, 20, 3246.
19. M. Han, G. Zhang, M. Li, S. Wang, Y. Zhang, H. Li, C. M. Lew,
H. Na, Int. J. Hydrogen Energ. 2011, 36, 2197.
20. G. G. Cameron, F. Davie, Chem. Zvesti. 1972, 26, 200.
Acknowledgment. This study was supported by the Radia-
tion Technology R&D program through the National
Bull. Korean Chem. Soc. 2015, Vol. 36, 2944–2947
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim