KOOLATH ET AL.
5
promotes clearance of amyloid-β by microglia. J Biol Chem.
2012;287:10977-10989.
compounds based on the sphingolipid moiety, it is impor-
tant to thoroughly consider the information on the ste-
reoisomerism of them.
6. Fan Y, Shi F, Liu J, et al. Selective reduction in the
sphingomyelin content of atherogenic lipoproteins inhibits
their retention in murine aortas and the subsequent develop-
ment of atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:
2114-2120.
7. Mitsutake S, Zama K, Yokota H, et al. Dynamic modification of
sphingomyelin in lipid microdomains controls development of
obesity, fatty iver, and type 2 diabetes. J Biol Chem. 2011;
286(32):28544-28555.
8. Li Z, Zhang H, Liu J, et al. Reducing plasma membrane
sphingomyelin increases insulin sensitivity. Mol Cell Biol. 2011;
31(20):4205-4218.
9. Yuyama K, Mitsutake S, Igarashi Y. Pathological roles of
ceramide and its metabolites in metabolic syndrome
and Alzheimer's disease. Biochim Biophys Acta. 1841;2014:
793-798.
ACKNOWLEDGEMENTS
The authors are grateful to Dr. Shinji Nakaoka for help-
ing with the heatmap analysis. This work was supported
by a grant-in-aid for scientific research KAKENHI (grants
19H02836, 17K19188, and 18K14350) from the MEXT of
Japan, the MEXT Doctoral program for Data Related
Innovation Expert Hokkaido University (D-DRIVE-HU)
program, and the Photo-excitonix Project in Hokkaido
University. This work was inspired by JSPS Asian CORE
Program “Asian Chemical Biology Initiative” and JSPS
A3 Foresight Program. A. A. S. thanks the International
Graduate Program (IGP), Hokkaido University, for the
scholarship given.
10. Ohnishi T, Hashizume C, Taniguchi M, et al. Sphingomyelin
synthase 2 deficiency inhibits the induction of murine colitis-
associated colon cancer. FASEB J. 2017;31(9):3816-3830.
11. Kawamura A, Berova N, Dirsch V, et al. Picomole scale stereo-
chemical analysis of sphingosines and dihydrosphingosines.
Bioorg Med Chem. 1996;4(7):1035-1043.
ORCID
12. a) Dirsch V, Frederico J, Zhao N, et al.
A two-step
chemical and circular dichroic method for assigning the
absolute configurations of sphingosines. Tetrahedron Lett.
1995;36:4959-4962. b) Jiang H, Huang X, Nakanishi K,
Berova N. Nanogram scale absolute configurational assignment
of ceramides by circular dichroism. Tetrahedron Lett. 1999;40:
7645-7649.
REFERENCES
1. Hutt AJ. The development of single-isomer molecules: why
and how. CNS Spectr. 2002;7(4 Suppl 1):14-22.
2. a) Zheng D, Huang Y, Moseley H, et al. Automated protein fold
determination using a minimal NMR constraint strategy. Pro-
tein Sci. 2003;12(6):1232-1246. b) Oezguen N, Adamian L,
Xu Y, Rajarathnam K, Braun W. Automated assignment and
3D structure calculations using combinations of 2D homonu-
clear and 3D heteronuclear NOESY spectra. J Biomol NMR.
2002;22(3):249-263. c) Bailey-Kellogg C, Widge A, Kelley JJ,
Berardi MJ, Bushweller JH, Donald BR. The NOESY Jigsaw:
automated protein secondary structure and main-chain assign-
ment from sparse, unassigned NMR data. J Comput Biol. 2000;
7(3-4):537-558. d) Pervushin K, Riek R, Wider G, Wutrich K.
Attenuated T2 relaxation by mutual cancellation of dipole–
dipole coupling and chemical shift anisotropy indicates an ave-
nue to NMR structures of very large biological macromolecules
in solution. Proc Natl Acad Sci U S A. 1997;94(23):12366-12371.
3. Erickson J, Neidhart DJ, VanDrie J, et al. Design, activity, and
2.8 Å crystal structure of a C2 symmetric inhibitor complexed
to HIV-1 protease. Science. 1990;249(4968):527-533.
4. a) Ullman MD, Radin NS. The enzymatic formation of
sphingomyelin from ceramide and lecithin in mouse liver.
J Biol Chem. 1974;249:1506-1512. b) Merrill AH, Jones DD. An
update of the enzymology and regulation of Sphingomyelin
metabolism. Biochim Biophys Acta, Lipids Lipid Metab. 1990;
1044:1-12.
5. a) Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H.
Regulation of sphingomyelin metabolism. Pharmacol Rep.
2016;68(3):570-581. b) Hannun YA. Functions of ceramide in
coordinating cellular responses to stress. Science. 1996;
274(5294):1855-1859. c) Yuyama K, Sun H, Mitsutake S,
Igarashi Y. Sphingolipid-modulated exosome secretion
13. Nakahashi A, Siddegowda AKC, Hammam MAS, Gowda SGB,
Murai Y, Monde K. Stereochemical study of sphingosine by
vibrational circular dichroism. Org Lett. 2016;18:2327-2330.
14. a) Bielawska A, Linardic CM, Hannun YA. Ceramide-
mediated biology. Determination of structural and stereospe-
cific
requirements
through
the
use
of
N-acyl-
phenylaminoalcohol analogs. J Biol Chem. 1992;267:18493-
18497. b) Bielawska A, Crane HM, Liotta D, Obeid LM,
Hannun YA. Selectivity of ceramide-mediated biology. Lack
of activity of erythro-dihydroceramide. J Biol Chem. 1993;
268(35):26226-26232. c) Chalfant CE, Szulc Z, Roddy P,
Bielawska A, Hannun YA. The structural requirements for
ceramide activation of serine-threonine protein phosphatases.
J Lipid Res. 2004;45(3):496-506.
15. Inokuchi J, Norman SR. Preparation of the active isomer of
1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor
of murine glucocerebroside synthetase. J Lipid Res. 1987;28(5):
565-571.
16. a) Koskinen AMP, Koskinen PM. Synthetic studies towards
amino alcohols. Diastereocontrolled reduction of α'-chiral α,β-
enones. Tetrahedron Lett. 1993;34:6765-6768. b) Katsumura S,
Yamamoto N, Fukuda E, Iwama S. Highly diastereoselective
synthesis of D-threo- and D-erythro-sphingosine from glycidol.
Chem Lett. 1995;393-395. c) Saito S, Murai Y, Usuki S, et al.
Synthesis of nontoxic fluorous sphingolipids as molecular pro-
bes of exogenous metabolic studies for rapid enrichment by
fluorous solid phase extraction. Eur J Org Chem. 2017;1045-
1051.