Inorg. Chem. 1996, 35, 4791-4793
4791
isooxocyanogen, diisooxocyan). It is well established that
AgOCN reacts with Br2 at temperatures as high as 200 °C to
form bromine isocyanate, BrNCO, in high yield.8 Carbonyl
diisocyanate, CO(NCO)2, is a known side product of this
reaction.8d,9 In the present study, we reacted a large excess of
freshly prepared and thoroughly dried (at 150 °C) AgOCN with
Br2 (distilled and dried over P4O10) at 18 °C in a gas cell which
was especially designed for this experiment.10 All absorptions
in the gas IR spectrum could undoubtedly assigned to carbonyl
diisocyanate as the only stable IR-active product in the gas phase
(no remaining BrNCO).9 Careful analysis of the nonvolatile
solid revealed, besides unreacted AgOCN, the presence of AgBr
and elemental silver. In another experiment, we repeated the
reaction of AgOCN with Br2 in a stainless steel-glass vacuum
line and isolated (volatile at -115 °C) and identified elemental
nitrogen as a further product. The formation of N2 (and not
O2!) was unequivocally established by gas discharge and mass
spectrometry.11 However, traces of CO and of CO2 were also
detected by mass spectrometry. The volumetric analysis
revealed that 3-4 equiv of bromine (Br2) generates 1 equiv of
nitrogen (N2). Therefore, the overall stoichiometry of the
reaction can be approximated according to eq 1. According to
Does Diisooxocyan (OCN-NCO) Exist?
Axel Schulz and Thomas M. Klapo1tke*
Department of Chemistry, University of Glasgow,
Glasgow G12 8QQ, U.K.
ReceiVed January 17, 1996
Introduction
The linear cyanate ion [NCO]- can be regarded as a
pseudohalide ion, and covalently bound species are known
which contain the NCO unit coordinated either via oxygen (H-
OCN, cyanic acid)1 or via nitrogen (H-NCO, isocyanic
acid).1ac,2 However, most of the known NCO compounds exist
in the iso form (R-NdCdO, R ) halogen, alkyl, aryl).3 (N.B.
There are also many trimeric organic OCN derivatives, e.g.
triazines and cyanuric acid.3) The structurally related fulminate
ion [CNO]- is also known (AgONC, silver fulminate; HCNO,
fulminic acid),1c,2d,4 and there are also theoretical and experi-
mental reports on the corresponding dipseudohalogen (ONC-
CNO, cyanogen N,N′-dioxide).5 The existence of dipseudohalo-
gen species containing cyanate units has also been postulated
by several authors;6 however, there are no experimental proofs
for a compound of the type NtC-O-O-CtN (1, oxocyano-
gen, dioxocyan). In 1980, Delgado and Fernandez reported the
formation of oxocyanogen (1) as an intermediate species in the
reaction of AgOCN with Br2.7 In that paper, the authors claimed
to have stabilized “(OCN)2” by subsequent reaction with TiCl4,
resulting in the formation of a polymeric compound of the type
{TiCl4(OCN)2}n.7 However, no direct evidence for the forma-
tion of (OCN)2 was found.
24AgOCN + 11Br2 f
22AgBr + 2Ag + 8OC(NCO)2 + 4N2 (1)
eq 1 2.75 equiv Br2 corresponds to 1 equiv of N2. Experimen-
tally it was found that 3-4 equiv of Br2 generated 1 equiv of
N2. This may indicate either very crude volumetric data or that
eq 1 just gives an approximate overall stoichiometry. Elemental
silver may be formed by reaction of OCN• radicals with AgOCN
(eq 2). This reaction was estimated to be thermodynamically
AgOCN(s) + OCN•(g) f
Results and Discussion
We have now carried out a combined theoretical and
experimental study and investigated the reaction behavior of
AgOCN with Br2 both in solution and in a neat reaction at room
temperature. In this note, we want to report direct evidence
for the intermediate formation of OdCdN-NdCdO (2,
Ag(s) + OdCdN-NdCdO(g) (2)
2
highly favorable: ∆H°(2) ) -53.7 kcal mol-1 12
The formation
.
of AgBr can easily be explained by reaction of AgOCN with
BrNCO (eq 3), which is thermodynamically allowed by ∆H°(3)
(1) (a) Defrees, D. J.; Loew, G. H.; McLean, A. D. Astrophys. J. 1982,
254, 405. (b) Yokoyama, K.; Takane, S.; Fueno, T. Bull. Chem. Soc.
Jpn. 1991, 64, 2230. (c) Pinnavaia, N.; Bramley, M. J.; Su, M. D.;
Green, W. H.; Handy, N. C. J. Mol. Phys. 1993, 78, 319. (d) East, A.
L. L.; Johnson, C. S.; Allen, W. D. J. Chem. Phys. 1993, 98, 1299.
(e) Blanch, R. J.; McCluskey, A. Chem. Phys. Lett. 1995, 241, 116.
(2) (a) Breulet, J.; Lievin, J. Theor. Chim. Acta 1982, 61, 59. (b) Fusina,
L.; Carlotti, M.; Carli, B. Can. J. Phys. 1984, 62, 1452. (c) Spiglanin,
T. A.; Chandler, D. W. J. Chem. Phys. 1987, 87, 1577. (d) Hop, C. E.
C. A.; Vandenberg, K. J.; Holmes, J. L.; Terlouw, J. K. J. Am. Chem.
Soc. 1989, 111, 72. (e) Yamada, K. M. T.; Winnewisser, M.; Johns,
J. W. C. J. Mol. Spectrosc. 1990, 140, 353. (f) Ruscic, B.; Berkowitz,
J. J. Chem. Phys. 1994, 100, 4498. (g) Boyce, C. W.; Gillies, C. W.;
Warner, H.; Gillies, J. Z.; Lovas, F. J.; Suenram, R. D. J. Mol.
Spectrosc. 1995, 171, 533. (h) Brown, S. S.; Berghout, H. J.; Crim,
F. F. J. Chem. Phys. 1995, 102, 8440.
AgOCN(s) + BrNCO(g) f AgBr(s) + 2
(3)
) -11.2 kcal mol-1 16
.
We do stress, however, that reaction 2
(8) (a) Gottardi, W. Angew. Chem. 1971, 83, 445; Angew. Chem., Int.
Ed. Engl. 1971, 10, 416. (b) Gottardi, W. Monatsh. Chem. 1972, 103,
1150. (c) Frost, D. C.; MacDonald, C. B.; McDowell, C. A.;
Westwood, N. P. C. Chem. Phys. 1980, 47, 111. (d) Devore, T. C. J.
Mol. Spectrosc. 1987, 162, 287. (e) Gerke, M.; Schatte, G.; Willner,
H. J. Mol. Spectrosc. 1989, 135, 359.
(9) Balfour, W. J.; Fougere, S. G.; Klapstein, D.; Nau, W. M. Spectrochim.
Acta 1994, 50A, 1039.
(10) Gas IR (10 cm, KBr, 2 Torr, Philips PU9800 FTIR) ν in cm-1: 2275
s, 2242 vs, 1775 s, 1768 sh, 1748 s, 1738 s, 1428 vs, 1405 m, 1075
vs, 1070 vs, 730 m, 725 sh, 618 sh, 609 m; for assignment, see ref 9.
(11) MS (EI, 70 eV, 20 °C) m/e (intensity): 32 (2), 28 (100). Reaction of
AgOC15N with Br2, MS (EI, 70 eV, 20 °C) m/e (intensity): 32 (2),
30 (100), 29 (10), 28 (8).
(3) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Perga-
mon: Oxford, 1984, p 336.
(4) (a) Winnewisser, M.; Bodenseh, H. K. Z. Naturforsch. 1967, 22A,
1724. (b) Winnewisser, B. P.; Jensen, P. J. Mol. Spectrosc. 1983, 101,
408. (c) Quapp, W.; Albert, S.; Winnewisser, B. P.; Winnewisser, M.
J. Mol. Spectrosc. 1993, 160, 540. (d) Wagner, G.; Winnewisser, B.
P.; Winnewisser, M.; Sarka, K. J. Mol. Spectrosc. 1993, 162, 82. (e)
Islami, K.; Jabs, W.; Preusser, J.; Winnewisser, M.; Winnewisser, B.
P. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 1995, 99, 565.
(5) (a) Grundmann, C. Angew. Chem., Int. Ed. Engl. 1963, 2, 260. (b)
Maier, G.; Teles, J. H. Angew. Chem. 1987, 99,152; Angew. Chem.,
Int. Ed. Engl. 1987, 26, 155. (c) Pasinszki, T.; Westwood, N. P. C. J.
Am. Chem. Soc. 1995, 117, 8425.
(12) UL(AgOCN) ) 166.7 kcal mol-1 13
(OCN) ) 83.0 kcal mol-1 15 ∆Hatom(Ag) ) 68.0 kcal mol-1 14
(N-N) ) 59.6 kcal mol-1 13
,
IP(Ag) ) 175.8 kcal mol-1 14
,
EA-
BE-
,
,
.
(13) Klapo¨tke, T. M.; Tornieporth-Oetting, I. C. Nichtmetallchemie;
VCH: Weinheim, Germany, 1994; pp 81, 93, and 96-103 and
Appendix.
(14) Johnson, D. A. Some Thermodynamic Aspects of Inorganic Chemistry;
Cambridge University Press: Cambridge, U.K., 1982; Appendix.
(15) Ziegler, T.; Gutsev, G. L. J. Comput. Chem. 1992, 13, 70.
(16) (a) See ref 12; BE(Br-N) ) 46.9 kcal mol-1 13,16b
,
EA(Br) ) 82.7
(6) (a) Hunt, H. J. Am. Chem. Soc. 1932, 54, 907. (b) Powell, P.; Timms,
P. TheChemistry of Non-Metals; Chapman and Hall: London, 1974.
(7) Delgado, M. S.; Fernandez, V. Z. Anorg. Allg. Chem. 1981, 476, 149.
kcal mol-1 13
,
UL(AgBr) ) 179.2 kcal mol-1 13
.
(b) Schulz. A.;
Tornieporth-Oetting, I. C.; Klapo¨tke, T. M. Inorg. Chem. 1995, 34,
4343.
S0020-1669(96)00049-3 CCC: $12.00 © 1996 American Chemical Society