R. V. Kolakowski, L. J. Williams / Tetrahedron Letters 48 (2007) 4761–4764
4763
O
Me
H
OTES
R''
n
-BuLi, THF
O
O
Me
H
TBDPSO
O
Me
OTES
R''
-78 ºC - rt, 1 h
TBDPSO
N
Me
R'
Me
OMe
R'
2
16-18
19-21
O
Me
H
O
Me
OTES
Me
TBDPSO
19
Me
OTES
Me
16
Me
73 %
Me
Me
OTES
O
Me
H
O
17
18
20
21
TBDPSO
OTES
Me
88%
OTES
Me
H
O
Me
H
O
H
H
OTES
TBDPSO
Me
OMe
Me
H
74%
H
H
OMe
Scheme 4.
ity in the assembly of ynones late in a synthesis.18 We
chose to evaluate in a model the viability of a Weinreb
amide/alkyne coupling for the late-stage union of a
C1–C20 fragment with a C21–C40 fragment (Scheme
4). Weinreb amide 2 served to model the C21–C40 pect-
enotoxin fragment and alkynes 16–18 served to model
the C1–C20 fragment. The coupling was found to be
effective (73–88%), even on small scale (5 mg). In each
instance, the alkyne (THF, 0.2 M) was treated with base
(1.0 equiv of 1.6 M n-BuLi in hexanes) at ꢀ78 °C and
the mixture was allowed to warm to 0 °C. The alkyny-
lide was then added dropwise to the Weinreb amide
(0.2 M), at ꢀ78 °C. The final ratio of alkyne to amide
in this study was 2:1. The mixture was allowed to warm
to room temperature over the course of 45 min and stir-
red until TLC analysis showed complete consumption of
2 (1 h). [Compound 21 characterization data. 1H NMR,
500 MHz (CDCl3) given as d (multiplicity, J in Hz): 7.65
(d, 7.5; 4H), 7.39 (m, 6H), 7.20 (d, 8.8; 1H), 6.71 (dd,
8.2; 1H), 6.63 (d, 8.6; 1H), 4.39 (t, 8.1; 1H), 3.78 (s,
3H), 3.43 (m, 3H), 2.33 (m, 2H), 2.23 (m, 2H), 2.11
(m, 1H), 2.00 (t, 12.0H; 1H), 1.86 (m, 2.00), 1.78 (m,
5), 1.67 (m, 3), 1.46 (m, 4H), 1.36 (m, 1), 1.28 (s, 3H),
1.05 (s, 9H), 0.98 (m, 12H), 0.87 (s, 3H), 0.69 (m, 6H);
13C NMR, 100 MHz, (CDCl3) d, 188.7, 157.7, 138.3,
135.8, 134.2, 132.8, 129.7, 127.8, 126.6, 114.0, 111.7,
99.7, 86.3, 84.5, 81.0, 69.7, 55.4, 49.4, 48.9, 43.8, 40.5,
40.4, 37.5, 32.9, 32.5, 30.9, 29.6, 27.5, 27.1, 26.6, 26.4,
23.4, 19.5, 19.0, 13.8, 7.2, 6.2 ESI/MS calcd for
C53H74O5Si2 (M+23) 869.5, found 869.4.] The high iso-
lated yields of 19–21 augur well for C1–C20/C21–C40
coupling en route to the pectenotoxins.18
Acknowledgments
Generous financial support from Merck & Co., NIH
(GM-078145), and Rutgers, The State University of
New Jersey is gratefully acknowledged.
References and notes
1. Yasumoto, T.; Murata, M.; Oshima, Y.; Sano, M.;
Matsumoto, K. G.; Clardy, J. Tetrahedron 1985, 41, 1019.
2. (a) Zhou, Z.-H.; Komiyama, M.; Terao, K.; Shimada, Y.
Nat. Toxins 1994, 2, 132; (b) Leira, F.; Cabado, A. G.;
Vieytes, M. R.; Roman, Y.; Alfonso, A.; Botana, L. M.;
Yasumoto, T.; Malaguti, C.; Rossini, G. P. Biochem.
Pharmacol. 2002, 63, 1979; Review: (c) Allingham, J. S.;
Klenchin, V. A.; Rayment, I. Cell Mol. Life Sci. 2006, 63,
2119.
3. Hung, J. H.; Sim, C. J. J. Nat. Prod. 1995, 58, 1722.
4. Chae, H.-D.; Choi, T.-S.; Kim, B.-M.; Jung, J. H.; Bang,
Y.-J.; Shin, D. Y. Oncogene 2005, 24, 4813.
5. Synthetic approaches: (a) Halim, R.; Brimble, M. A.;
Merten, J. Org. Lett. 2005, 7, 2659; (b) Bondar, D.; Liu, J.;
Muller, T.; Paquette, L. A. Org. Lett. 2005, 7, 1813; (c)
Peng, X.; Bondar, D.; Paquette, L. A. Tetrahedron 2004,
60, 9589; (d) Paquette, L. A.; Peng, X.; Bondar, D. Org.
Lett. 2002, 4, 937; (e) Micalizio, G. C.; Roush, W. R. Org.
Lett. 2001, 3, 1949; (f) Amano, S.; Fujiwara, K.; Murai, A.
Synlett 1997, 1300; (g) Fujiwara, K.; Kobayashi, M.;
Yamamoto, F.; Aki, Y.; Kawamura, M.; Awakura, D.;
Amano, S.; Okano, A.; Murai, A.; Kawai, H.; Suzuki, T.
Tetrahedron Lett. 2005, 46, 5067; (h) O’Connor, P. D.;
Knight, C. K.; Friedrich, D.; Peng, X.; Paquette, L. A. J.
Org. Chem. 2007, 72, 1747; (i) Lotesta, S. D.; Hou, Y.;
Williams, L. J. Org. Lett. 2007, 9, 869; (j) Pihko, P. M.;