A. K. S. WARRIER AND E. L. CLENNAN
Cyclic voltametry (CV)
Acknowledgements
An acetonitrile solution containing the corresponding pyrylogen
(0.002 M), internal reference (Ferrocene, 0.002 M), and the
supporting electrolyte (tetrabutylammonium perchlorate,
0.1 M) was used for the CV experiments. A three-electrode
experimental design consisting of a glassy carbon working
electrode, a silver/silver-nitrate/acetonitrile reference electrode,
and a platinum counter electrode was used for the CV
measurements. The glassy carbon electrode was frequently
polished in order to remove any deposits on the electrode
surface and the experiments were run in both an inert argon and
oxygen atmosphere. The experiments were repeated for various
The authors thank the National Science Foundation for their
generous support of this research.
REFERENCES
[1] C. A. Marquez, H. Wang, F. Fabbretti, J. O. Metzger, J. Am. Chem. Soc.
2008, 130, 17208.
[2] M. A. Fox, M. Chanon, In Photoinduced Electron Transfer Vol. Elsevier
Science Publishers B.V., A–D Amsterdam, 1988.
[3] I. R. Gould, D. Ege, J. E. Moser, S. Farid, J. Am. Chem. Soc. 1990, 112,
4290.
[4] E. L. Clennan, C. Liao, E. Ayokosok, J. Am. Chem. Soc. 2008, 130, 7552.
[5] R. Akaba, M. Kamata, A. Koike, K.-I. Mogi, Y. Kuriyama, H. Sakuragi,
J. Phys. Org. Chem. 1997, 10, 861.
scan rates from 50 to 500 mV sꢀ1
.
[6] N. Manoj, R. A. Kumar, K. R. Gopidas, J. Photochem. Photobiol. A Chem.
1997, 109, 109.
[7] M. A. Miranda, Chem. Rev. 1994, 94, 1063.
[8] A. T. Balaban, G. W. Fischer, A. Dinculescu, A. V. Koblik, G. N.
Dorofeendo, V. V. Mezheritskii, W. Schroth, in Advances in Heterocyclic
Chemistry, Vol. Suppl. 2 (Ed.: A. R. Katritzky), Academic Press, New York,
1982. p. 434.
Fluorescence quantum yields
The fluorescence quantum yields were measured by comparing
the integrated area of the emission of the pyrylogens (PY) and a
standard, 9,10-diphenylanthracene (DPA). Quantum yields were
calculated by Eqn (1) in which the Fs are the fluorescence
quantum yields, As are the absorbances at the corresponding
excitation wavelengths, ns are the refractive indices of the
solvents, and the Fs are the integrated emission areas.[22]
Emission spectra of both DPA in cyclohexane and the pyrylogens
in acetonitrile were collected without degassing the solvent. The
pyrylogens were excited at their absorption maximum and DPA
at 372 nm. The integrated emission areas were obtained by
plotting the corrected emission spectra using Origin.[23] The
fluorescence quantum yield of DPA is taken as 0.7 ꢂ 0.04.[24]
´
[9] M. El-Roz, J. Lalevee, F. Morlet-Savary, X. Allonas, J. P. Fouassier, J.
Polym. Sci. A Polym. Chem. 2008, 46, 7369.
[10] S. Parret, F. Morlet-Savary, J. P. Fouassier, K. Inomata, T. Matsumoto, F.
Heisel, Bull. Chem. Soc. Jpn. 1995, 68, 2791.
[11] J. Zhang, Z. Zhu, Dyes Pigm. 1995, 27, 263.
[12] K. A. Leonard, M. I. Nelen, L. T. Anderson, S. L. Gibson, R. Hilf, M. R.
Detty, J. Med. Chem. 1999, 42, 3942.
[13] K. A. Leonard, M. I. Nelen, T. P. Simard, S. R. Davies, S. O. Gollnick, A. R.
Oseroff, S. L. Gibson, R. Hilf, L. B. Chen, M. R. Detty, J. Med. Chem. 1999,
42, 3953.
[14] B. K. Wetzl, S. M. Yarmoluk, D. B. Craig, O. S. Wolfbeis, Angew. Chem.
Int. Ed. Engl. 2004, 43, 5400.
[15] M. F. Molaire, P. M. Borsenberger, J. H. Peters, US Patent, Vol. 5240802
(Ed.: U.P. Office), USA, 1993.
[16] J. L. R. Williams, S. Y. Farid, J. C. Doty, R. C. Daly, D. P. Specht, R. Searle, D.
G. Borden, H. J. Chang, P. A. Martic, Pure Appl. Chem. 1977, 49, 523.
[17] Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, J.
Appl. Phys. 1994, 76, 671.
AsFun2
AuFsn2o
Fu ¼
Fs
(1)
Computational studies
[18] A. P. Marchetti, M. Scozzafava, R. H. Young, J. Chem. Phys. 1988, 89,
1827.
[19] W. D. Rudorf, Sci Synthesis 2003, 14, 649.
Calculations were performed with the Gaussian 03 program using
the Becke/Stephens three parameter Lee–Yang–Parr correlation
hybrid functional B3LYP in conjunction with the 6-31G(d) basis
set. Frequency calculations were used to verify the location of
energy minima. The absence of spin contamination was verified
in each calculation by examination of <S2> which showed values
acceptably close to 0 for all singlets and to 0.75 for all doublets.[25]
´
´
´
[20] M. Gonzalez-Bejar, S.-E. Stiriba, M. A. Miranda, J. Perez-Prieto, ARKI-
VOC 2007, iv, 344.
´
[21] M. Gonzalez-Bejar, S. E. Stiriba, L. R. Domingo, J. Perez-Prieto, M. A.
Miranda, J. Org. Chem. 2006, 71, 6932.
[22] D. F. Eaton, in CRC Handbook of Organic Photochemistry, Vol. I (Ed.: J. C.
Scaiano), CRC Press, Inc., Boca Raton, Florida, 2000, p. 231.
[23] Analysis was performed using ORIGIN software, version 7 (OriginLab
Corporation, Northampton, MA).
[24] S. R. Meech, D. Phillips, J. Photochem. 1983, 23, 193.
[25] M. J. T. Gaussian, 03 G. W. Frisch, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J.
C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople,
Revision C.02 ed., Gaussian Inc, Wallingford CT, 2004.
Electrospray ionization mass spectrometry
TheESI-Massanalysis wasperformedusinga Thermo-FinniganLCQ
Classicelectrospraymassspectrometer. Thedatawerecollectedfor
mMsolutionsofthecompoundsdissolvedinacetonitrilecontaining
0.01% trifluoroacetic acid by direct infusion at the flow rate of
3 ml minꢀ1 in the positive ion mode. LCQ conditions: nitrogen
auxiliary gas 100 au, helium sheath gas 100 au, ion spray voltage
4.5 kV, capillary voltage 10V, capillarytemperature2008C, andtube
lens offset ꢀ10V. The base peak in all cases corresponds to the one
electron reduced radical cation. A similar phenomenon has also
been reported for the ESI-Mass analysis of viologens.[26–28]
Supplementary material
[26] B. L. Milman, Rapid Commun. Mass Spectrom. 2003, 17, 1344.
[27] J. C. Marr, J. B. King, Rapid Commun. Mass Spectrom. 1997, 11, 479.
[28] E. Moyano, D. E. Games, M. T. Galceran, Rapid Commun. Mass
Spectrom. 1996, 10, 1379.
NMR data, computational details, ESI-MS data, and ESR of 4aR..
These materials are available at the epoc website in Wiley
Interscience.
View this article online at wileyonlinelibrary.com
Copyright ß 2010 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2011, 24 22–28