5010 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 25
Hattori et al.
mL), which was further stirred with aqueous saturated
NaHCO3 (5 mL) for 30 min. The whole was washed with H2O
(5 mL × 2) and aqueous saturated NaHCO3 (5 mL). The
separated organic phase was dried (Na2SO4) and concentrated
to dryness in vacuo. The residue was purified by a silica gel
column (2 × 9 cm), which was eluted with CHCl3 to give 9a
(274 mg, 95% as a foam): FAB-MS m/ z 581 (MH+); 1H-NMR
(CDCl3) 8.13-7.30 (m, 15 H, Bz × 3), 8.05 (br s, 1 H, NH),
7.71 (d, 1 H, H-6, J 6,5 ) 8.2 Hz), 6.38 (d, 1 H, H-1′, J 1′,2′ ) 5.0
Hz), 6.01 (d, 1 H, H-2′, J 2′,1′ ) 5.0 Hz), 5.74 (dd, 1 H, H-5, J 5,6
) 8.2 Hz, J 5,NH ) 2.0 Hz), 4.98-4.87 (m, 3 H, H-4′, H-5′), 2.92
(s, 1 H, 3′-CtCH).
Compound 9a (150 mg, 0.26 mmol) was treated with
methanolic ammonia (saturated at 0 °C, 10 mL) for 2 days at
room temperature. The solvent was removed in vacuo, and
the residue was purified on a silica gel column (2 × 10 cm),
which was eluted with 5-15% MeOH in CHCl3 to give 14a
(59.4 mg, 85% as a white powder, which was crystallized from
MeOH): mp 226-228 °C; EI-MS m/ z 268 (M+); IR (Nujol)
2110 cm-1 (CtC); UV λmax (H2O) 261 nm (ꢀ 9 900), λmax (0.5 N
HCl) 261 nm (ꢀ 10 200), λmax (0.5 N NaOH) 262 nm (ꢀ 7 500);
1H-NMR (DMSO-d6) 11.35 (br s, 1 H, NH), 7.99 (d, 1 H, H-6,
J 6,5 ) 8.2 Hz), 5.93 (s, 1 H, 3′-OH), 5.86 (d, 1 H, 2′-OH, J 2′-OH,2′
) 6.7 Hz), 5.83 (d, 1 H, H-1′, J 1′,2′ ) 7.3 Hz), 5.69 (d, 1 H, H-5,
J 5,6 ) 8.2 Hz), 5.13 (t, 1 H, 5′-OH, J ) 4.5 Hz), 4.18 (dd, 1 H,
H-2′, J 2′,1′ ) 7.3 Hz, J 2′,2′-OH ) 6.7 Hz), 3.90-3.88 (m, 1 H, H-4′),
3.74-3.60 (m, 2 H, H-5′), 3.55 (s, 1 H, 3′-CtCH). Anal.
(C11H12N2O6) C, H, N.
(B) Stannic chloride (0.23 mL, 2.0 mmol) was added to a
solution of bis(TMS)uracil [prepared from uracil (225 mg, 2
mmol) and (NH4)2SO4 (7 mg) in HMDS (2 mL)] and 6 (264 mg,
0.5 mmol) in CH3CN (4 mL) at 0 °C. The mixture was stirred
for 2 days at room temperature, and workup was done as
described in the method A. The residue was purified on a silica
gel column (2 × 9 cm), which was eluted with CHCl3 to give
9a (167 mg, 58% as a foam). Further elution of the column
with 5% MeOH in CHCl3 gave 10 (57 mg, 20% as a foam).
Physical data of 10: FAB-MS m/ z 581 (MH+); 1H-NMR
(CDCl3) 9.26 (br s, 1 H, NH), 8.14-7.29 (m, 16 H, Bz × 3, H-6),
6.92 (d, 1 H, H-1′, J 1′,2′ ) 6.8 Hz), 6.69 (d, 1 H, H-2′, J 2′,1′ ) 6.8
Hz), 5.82 (d, 1 H, H-5, J 5,6 ) 7.6 Hz), 5.04-4.88 (m, 3 H, H-4′,
H-5′), 2.82 (s, 1 H, 3′-CtCH).
methanolic ammonia (saturated at 0 °C) for 2 days at room
temperature. The solvent was removed in vacuo, and the
residue was purified on a silica gel column, which was eluted
with 5-20% MeOH in CHCl3 to give the desired 3′-C-ethynyl
ribonucleosides.
1-(3-C-E t h yn yl-â-D-r ibo-p en t ofu r a n osyl)-5-flu or ocy-
tosin e (13b). Reaction of pertrimethylsilylated 5-fluorocy-
tosine (2 mmol) with 6 for 12 h at room temperature gave 7b
(224 mg, 75% as a foam): FAB-MS m/ z 598 (MH+); 1H-NMR
(CDCl3) 8.15-7.31 (m, 15 H, Bz × 3), 7.77 (d, 1 H, H-6, J 6,5-F
) 6.1 Hz), 6.54 (d, 1 H, H-1′, J 1′,2′ ) 5.1 Hz), 6.03 (d, 1 H, H-2′,
J 2′,1′ ) 5.1 Hz), 4.97-4.96 (m, 2 H, H-5′), 4.91-4.89 (m, 1 H,
H-4′), 2.90 (s, 1 H, 3′-CtCH).
From 7b (189 mg, 0.32 mmol), 13b (81 mg, 89% as a white
powder, which was crystallized from MeOH) was obtained.
13b: mp 242 °C dec; EI-MS m/ z 285 (M+); IR (Nujol) 2115
cm-1 (CtC); UV λmax (H2O) 280 nm (ꢀ 7 800), λmax (0.5 N HCl)
1
290 nm (ꢀ 11 400), λmax (0.5 N NaOH) 280 nm (ꢀ 8 400); H-
NMR (DMSO-d6) 8.11 (d, 1 H, H-6, J 6,5-F ) 7.2 Hz), 7.82, 7.57
(br s, each 1 H, NH), 5.84 (dd, 1 H, H-1′, J 1′,2′ ) 6.9 Hz, J 1′,5-F
) 1.9 Hz), 5.81 (s, 1 H, 3′-OH), 5.72 (d, 1 H, 2′-OH, J 2′-OH,2′
)
6.6 Hz), 5.14 (t, 1 H, 5′-OH, J ) 4.5 Hz), 4.13 (dd, 1 H, H-2′,
J 2′,1′ ) 6.9 Hz, J 2′,2′-OH ) 6.6 Hz), 3.88-3.87 (m, 1 H, H-4′),
3.75-3.60 (m, 2 H, H-5′), 3.53 (s, 1 H, 3′-CtCH). Anal.
(C11H12FN3O5) C, H, F, N.
1-(3-C-E t h y n y l-â-D -r i b o-p e n t o fu r a n o s y l)-5-flu o r o -
u r a cil (14b). Reaction of pertrimethylsilylated 5-fluorouracil
(2 mmol) with 6 for 6.5 h at room temperature gave 9b (283
mg, 95% as a foam): FAB-MS m/ z 599 (MH+); 1H-NMR
(CDCl3) 8.16 (br s, 1 H, NH), 8.14-7.30 (m, 15 H, Bz × 3),
7.83 (d, 1 H, H-6, J 6,5-F ) 5.8 Hz), 6.35 (dd, 1 H, H-1′, J 1′,2′
)
4.9 Hz, J 1′,5-F ) 1.7 Hz), 5.79 (d, 1 H, H-2′, J 2′,1′ ) 4.9 Hz),
4.96-4.95 (m, 2 H, H-5′), 4.89-4.87 (m, 1 H, H-4′), 2.95 (s, 1
H, 3′-CtCH).
From 9b (276 mg, 0.46 mmol), 14b (121 mg, 92% as a white
powder, which was crystallized from MeOH) was obtained.
14b: mp >210 °C dec; EI-MS m/ z 286 (M+), 251 (M+ - OH);
IR (Nujol) 2120 cm-1 (CtC); UV λmax (H2O) 268 nm (ꢀ 7 700),
λmax (0.5 N HCl) 269 nm (ꢀ 8 400), λmax (0.5 N NaOH) 269 nm
1
(ꢀ 6 900); H-NMR (DMSO-d6) 11.87 (br s, 1 H, NH), 8.33 (d,
1 H, H-6, J 6,5-F ) 7.2 Hz), 5.93 (s, 1 H, 3′-OH), 5.83 (dd, 1 H,
H-1′, J 1′,2′ ) 7.2 Hz, J 1′,5-F ) 1.8 Hz), 5.82 (d, 1 H, 2′-OH,
J 2′-OH,2′ ) 6.4 Hz), 5.27 (t, 1 H, 5′-OH, J ) 4.1 Hz), 4.18 (dd, 1
H, H-2′, J 2′,1′ ) 7.2 Hz, J 2′,2′-OH ) 6.4 Hz), 3.92-3.91 (m, 1 H,
H-4′), 3.77-3.64 (m, 2 H, H-5′), 3.56 (s, 1 H, 3′-CtCH). Anal.
(C11H11FN2O6‚1/3 MeOH), C, H, F, N.
1-(3-C-Eth yn yl-â-D-r ibo-p en tofu r a n osyl)th ym in e (14c).
Reaction of pertrimethylsilylated thymine (2.0 mmol) with 6
for 27 h at room temperature gave 9c (290 mg, 98% as a
foam): FAB-MS m/ z 595 (MH+); 1H-NMR (CDCl3) 8.17-7.34
(m, 17 H, Bz × 3, H-6, NH), 6.44 (d, 1 H, H-1′, J 1′,2′ ) 5.9 Hz),
6.06 (d, 1 H, H-2′, J 2′,1′ ) 5.9 Hz), 4.98-4.95 (m, 1 H, H-4′),
4.93-4.90 (m, 2 H, H-5′), 2.91 (s, 1 H, 3′-CtCH), 1.72 (s, 3 H,
5-Me).
3-(3-C-E t h yn yl-â-D-r ibo-p en t ofu r a n osyl)u r a cil (15).
Compound 10 (55 mg, 0.1 mmol) was treated with methanolic
ammonia (saturated at 0 °C, 1.5 mL) for 2 days at room
temperature. The solvent was removed in vacuo, and the
residue was purified on a silica gel column (2 × 6 cm), which
was eluted with 5-15% MeOH in CHCl3 to give 15 (17 mg,
67% as a white powder, which was crystallized from aqueous
MeOH): mp 255 °C dec; EI-MS m/ z 250 (M+ - OH), 237 (M+
- CH2OH); IR (Nujol) 2230 cm-1 (CtC); UV λmax (H2O) 264
nm (ꢀ 7 000), λmax (0.5 N HCl) 264 nm (ꢀ 7 200), λmax (0.5 N
1
NaOH) 293 nm (ꢀ 9 900); H-NMR (DMSO-d6) 11.20 (br s, 1
H, NH), 7.47 (d, 1 H, H-6, J 6, ) 7.6 Hz), 6.09 (d, 1 H, H-1′,
5
J 1′,2′ ) 8.3 Hz), 5.67 (s, 1 H, 3′-OH), 5.62 (d, 1 H, 2′-OH, J 2′-OH,2′
) 7.0 Hz), 5.60 (d, 1 H, H-5, J 5,6 ) 7.6 Hz), 5.06 (dd, 1 H, H-2′,
J 2′,1′ ) 8.3 Hz, J 2′,2′-OH ) 7.0 Hz), 4.48-4.46 (m, 1 H, 5′-OH),
3.86-3.84 (m, 1 H, H-4′), 3.68-3.61 (m, 2 H, H-5′), 3.37 (s, 1
H, 3′-CtCH). Anal. (C11H12N2O6‚1/2 H2O) C, H, N.
From 9c (290 mg, 0.49 mmol), 14c (115 mg, 83% as a white
powder, which was crystallized from MeOH) was obtained.
14c: mp 113-118 °C; EI-MS m/ z 282 (M+); IR (Nujol) 2115
cm-1 (CtC); UV: λmax (H2O) 266 nm (ꢀ 8 800), λmax (0.5 N HCl)
265 nm (ꢀ 8 600), λmax (0.5 N NaOH) 267 nm (ꢀ 7 000); 1H-
NMR (DMSO-d6) 11.30 (br s, 1 H, NH), 7.85 (d, 1 H, H-6,
J 6,5-Me ) 1.0 Hz), 5.90 (s, 1 H, 3′-OH), 5.83 (d, 1 H, H-1′, J 1′,2′
) 7.5 Hz), 5.81 (d, 1 H, 2′-OH, J 2′-OH,2′ ) 6.7 Hz), 5.13 (t, 1 H,
5′-OH, J ) 4.4 Hz), 4.19 (dd, 1 H, H-2′, J 2′,1′ ) 7.5 Hz, J 2′,2′-OH
) 6.7 Hz), 3.88-3.86 (m, 1 H, H-4′), 3.74-3.65 (m, 2 H, H-5′),
3.56 (s, 1 H, 3′-CtCH), 1.73 (d, 3 H, 5-Me, J 5-Me,6 ) 1.0 Hz).
Anal. (C12H14N2O6‚MeOH) C, H, N.
Gen er a l Met h od for t h e Syn t h esis of 3′-C-E t h yn yl
Ribon u cleosid es. Stannic chloride (3 mmol for N6-benzoyl-
adenine and N2-acetylguanine, 2.5 mmol for 5-fluorocytosine,
and 2 mmol for 5-fluorouracil and thymine) was added to a
solution of pertrimethylsilylated nucleobases [2 mmol, pre-
pared from the nucleobase (2 mmol) and (NH4)2SO4 (7 mg, for
the pyrimidine base) or pyridine (2 mL, for the purine base)
in HMDS (6 mL)] and 6 (264 mg, 0.5 mmol) in CH3CN (4 mL)
at 0 °C. The whole was stirred for the indicated period at room
temperature. The mixture was diluted with CHCl3 (12 mL)
and aqueous saturated NaHCO3 (5 mL) with vigorous stirring
for 30 min. The precipitate was removed by filtration through
a Celite pad, which was washed well with CHCl3. The
combined filtrate and washings were washed with H2O (5 mL
× 2) and aqueous saturated NaHCO3 (5 mL). The separated
organic phase was dried (Na2SO4) and concentrated in vacuo.
The residue was purified on a silica gel column to give the
desired blocked nucleosides, which were then treated with
9-(3-C-Eth yn yl-â-D-r ibo-p en tofu r a n osyl)a d en in e (16).
Reaction of pertrimethylsilylated N6-benzoyladenine (2.0 mmol)
with 6 for 7 h at room temperature gave 11 (261 mg, 74% as
1
a foam): FAB-MS m/ z 708 (MH+); H-NMR (CDCl3) 8.99 (br
s, 1 H, NHBz), 8.75 (s, 1 H, H-8), 8.49 (s, 1 H, H-2), 8.16-7.31
(m, 15 H, Bz × 3), 6.58 (d, 1 H, H-1′, J 1′,2′ ) 4.8 Hz), 6.56 (d,
1 H, H-2′, J 2′,1′ ) 4.8 Hz), 5.07-5.03 (m, 2 H, H-5′), 4.98-4.94
(m, 1 H, H-4′), 2.95 (s, 1 H, 3′-CtCH).
From 11 (234 mg, 0.33 mmol), 16 (80 mg, 83% as a white
powder, which was crystallized from H2O) was obtained. 16:
mp 149-152 °C; EI-MS m/ z 291 (M+), 274 (M+ - OH); IR