Communication
ChemComm
inversion of configuration relative to Pd for alkoxides.17 Thus, the
mixture of vinyl side chain diastereomers arises from a mixture
of p-allyl-Pd diastereomers formed from single-bond rotamers
present during the redox-relay process.9h Reactions with enantio-
enriched substrates and catalysts did not identify any matched/
mismatched cases, consistent with substrate control over this
stereocenter.12
Acad. Sci. U. S. A., 2011, 108, 6745–6750; (c) F. Kopp, C. F. Stratton,
L. B. Akella and D. S. Tan, Nat. Chem. Biol., 2012, 8, 358; (d) R. A. Bauer,
T. A. Wenderski and D. S. Tan, Nat. Chem. Biol., 2013, 9, 21–29;
(e) T. Guney, T. A. Wenderski, M. W. Boudreau and D. S. Tan, Chem. –
Eur. J., 2018, 24, 13150–13157; ( f ) J. L. Brooks, L. Xu, O. Wiest and
D. S. Tan, J. Org. Chem., 2017, 82, 57–75.
5 (a) X. Cachet and F. Poree, RSC Adv., 2013, 3, 12466–12484; (b) H. Do,
C. W. Kang, J. H. Cho and S. R. Gilbertson, Org. Lett., 2015, 17,
3972–3974; (c) M. Sasaki, N. Akiyama, K. Tsubone, M. Shoji, M. Oikawa
and R. Sakai, Tetrahedron Lett., 2007, 48, 5697–5700; (d) B. B. Snider and
N. A. Hawryluk, Org. Lett., 2000, 2, 635–638; (e) U. M. Krishna, Tetrahedron
Lett., 2010, 51, 2148–2150; ( f ) S. K. Bankar, J. Mathew and S. S. V.
Strategic use of a redox-relay process to transmit reactivity
between two successive cyclization reactions has provided
versatile, efficient access to bicyclic ether scaffolds from readily
available, linear diene–diol substrates. The redox-relay process
leverages a Pd migration terminating at an olefin to generate a
reactive p-allyl-Pd species, a useful synthetic construct that has
received limited attention to date.18 The reaction provides
complete diastereoselectivity for cis-ring fusion despite poor
diastereoselectivity in the initial oxidative cyclization. Mechanistic
studies are consistent with reversibility of this first cyclization and
an equilibrium process in which ring fusion diastereoselectivity is
ultimately dictated by the downstream, irreversible p-allyl-Pd
cyclization. While the resulting vinyl side chain is formed with
modest diastereoselectivity, this site is readily epimerized in
high diastereoselectivity for preparative applications. It may
also be possible in the future to control the diastereoselectivity
of this p-allyl-Pd cyclization with new catalyst designs. Future
efforts will focus on further investigations of reaction mechanism,
expansion of reaction scope, and applications to natural product
and library synthesis.
´
Ramasastry, Chem. Commun., 2016, 52, 5569–5572; (g) D. Cintulova,
ˇ
´
ˇ
´
´
´
´
M. Slahu´ckova, J. Pastrnak, N. Pronayova and P. Szolcsanyi, Synthesis,
2017, 755–762.
6 K. Nicolaou, D. Edmonds and P. Bulger, Angew. Chem., Int. Ed., 2006,
45, 7134–7186.
7 (a) N. Hayashi, K. Fujiwara and A. Murai, Tetrahedron, 1997, 53,
12425–12468; (b) F. E. McDonald, X. Wang, B. Do and K. I.
Hardcastle, Org. Lett., 2000, 2, 2917–2919; (c) T. Tokiwano, K. Fujiwara
and A. Murai, Synlett, 2000, 335–338; (d) F. Bravo, F. E. McDonald,
W. A. Neiwert and K. I. Hardcastle, Org. Lett., 2004, 6, 4487–4489;
(e) J. C. Valentine, F. E. McDonald, W. A. Neiwert and K. I. Hardcastle,
J. Am. Chem. Soc., 2005, 127, 4586–4587; ( f ) I. Vilotijevic and T. F.
Jamison, Science, 2007, 317, 1189–1192; (g) I. Vilotijevic and
T. F. Jamison, Angew. Chem., Int. Ed., 2009, 48, 5250–5281.
´
´
8 H. Sommer, F. Julia-Hernandez, R. Martin and I. Marek, ACS Cent.
Sci., 2018, 4, 153–165.
9 (a) L. K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem. Soc.,
1995, 117, 6414–6415; (b) Z. Guan, P. M. Cotts, E. F. McCord and
S. J. McLain, Science, 1999, 283, 2059–2062; (c) E. Werner, T. Mei,
A. Burckle and M. Sigman, Science, 2012, 338, 1455–1458; (d) L. Xu,
M. Hilton, X. Zhang, P. Norrby, Y. Wu, M. Sigman and O. Wiest,
J. Am. Chem. Soc., 2014, 136, 1960–1967; (e) L. Guo, S. Dai, X. Sui and
C. Chen, ACS Catal., 2016, 6, 428–441; ( f ) S. Singh, J. Bruffaerts,
´
A. Vasseur and I. Marek, Nat. Commun., 2017, 8, 14200; (g) F. Julia-
We thank Dr George Sukenick, Rong Wang, and Dr Sylvi
Rusli (MSK) for expert NMR and mass spectral support,
Dr Kristin Kirschbaum and Kelly Lambright (University of
Toledo) for X-ray analysis, and Dr Maria Chiriac, Dr Adam
Trotta, and Dr Jessica Hurtak (MSK) for helpful discussions.
Financial support from the NSF (GRFP DGE1746886 to M. C. L.),
NIH (T32 GM115327–Tan to M. C. L., T32 CA062948–Gudas to
J. L. B., and CCSG P30 CA008748 to C. B. Thompson), and MSK
Center for Experimental Therapeutics is gratefully acknowledged.
´
Hernandez, T. Moragas, J. Cornella and R. Martin, Nature, 2017, 545,
84–88; (h) M. J. Hilton, L.-P. Xu, P.-O. Norrby, Y.-D. Wu, O. Wiest and
M. S. Sigman, J. Org. Chem., 2014, 79, 11841–11850; (i) T.-S. Mei,
E. W. Werner, A. J. Burckle and M. S. Sigman, J. Am. Chem. Soc.,
2013, 135, 6830–6833; ( j) H. Patel and M. Sigman, J. Am. Chem. Soc.,
2015, 137, 3462–3465; (k) N. J. Race, C. S. Schwalm, T. Nakamuro
and M. S. Sigman, J. Am. Chem. Soc., 2016, 138, 15881–15884;
(l) H. Nakamura, K. Yasui, Y. Kanda and P. S. Baran, J. Am. Chem.
Soc., 2019, 141, 1494–1497.
10 (a) T. Hosokawa, K. Maeda, K. Koga and I. Moritani, Tetrahedron
Lett., 1973, 739–740; (b) T. Hosokawa, H. Ohkata and I. Moritani,
Bull. Chem. Soc. Jpn., 1975, 48, 1533–1536; (c) T. Hosokawa,
M. Hirata, S. Murahashi and A. Sonoda, Tetrahedron Lett., 1976, 17,
1821–1824.
11 (a) B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921–2944;
(b) R. C. Larock, H. Yang, S. M. Weinreb and R. J. Herr, J. Org. Chem.,
1994, 59, 4172–4178.
Conflicts of interest
There are no conflicts of interest to declare.
12 See ESI† for complete details.
13 (a) J. Uenishi, Y. S. Vikhe and N. Kawai, Chem. – Asian J., 2008, 3, 473–484;
(b) L. S. Hegedus and P. B. Ranslow, Synthesis, 2000, 953–958.
14 (a) M. F. Semmelhack, C. Kim, N. Zhang, C. Bodurow, M. Sanner,
W. Dobler and M. Meier, Pure Appl. Chem., 1990, 62, 2035–2040;
(b) M. F. Semmelhack and C. Bodurow, J. Am. Chem. Soc., 1984, 106,
1496–1498.
15 H. Zhao, A. Ariafard and Z. Lin, Organometallics, 2006, 25, 812–819.
16 (a) T. Kochi, T. Hamasaki, Y. Aoyama, J. Kawasaki and F. Kakiuchi,
J. Am. Chem. Soc., 2012, 134, 16544–16547; (b) A. Vasseur, L. Perrin,
O. Eisenstein and I. Marek, Chem. Sci., 2015, 6, 2770–2776.
17 B. M. Trost, Angew. Chem., Int. Ed. Engl., 1989, 28, 1173–1192.
18 (a) R. C. Larock, Y. D. Lu, A. C. Bain and C. E. Russell, J. Org. Chem., 1991,
56, 4589–4590; (b) R. C. Larock, Y. Wang, Y. Lu and C. A. Russell, J. Org.
Chem., 1994, 59, 8107–8114.
Notes and references
1 (a) T. Furuta, M. Nakayama, H. Suzuki, H. Tajimi, M. Inai, H. Nukaya,
T. Wakimoto and T. Kan, Org. Lett., 2009, 11, 2233–2236; (b) T. Hasegawa,
S. Shimada, H. Ishida and M. Nakashima, PLoS One, 2013, 8, e77308.
2 (a) A. Favre, F. Carreaux, M. Deligny and B. Carboni, Eur. J. Org.
Chem., 2008, 4900–4907; (b) C. Mukai, S. Hirai and M. Hanaoka,
J. Org. Chem., 1997, 62, 6619–6626; (c) E. Peris, A. Cave, E. Estornell,
M. Zafra-Polo, B. Figadere, D. Cortes and A. Bermejo, Tetrahedron,
2002, 58, 1335–1342.
3 N. Alnafta, J. P. Schmidt, C. L. Nesbitt and C. S. P. McErlean, Org.
Lett., 2016, 18, 6520–6522.
4 (a) A. L. Verano and D. S. Tan, Isr. J. Chem., 2017, 57, 279–291;
(b) G. Moura-Letts, C. M. DiBlasi, R. A. Bauer and D. S. Tan, Proc. Natl.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019