J. Am. Chem. Soc. 1996, 118, 8963-8964
8963
Nickel(II) Thiolate Complex with Carbon Monoxide
and Its Fe(II) Analog: Synthetic Models for CO
Adducts of Nickel-Iron-Containing Enzymes
Dao Hinh Nguyen, Hua-Fen Hsu, Michelle Millar,* and
Stephen A. Koch*
Department of Chemistry
State UniVersity of New York at Stony Brook
Stony Brook, New York 11794-3400
Catalina Achim, Emile L. Bominaar, and Eckard Mu¨nck*
Department of Chemistry
Carnegie Mellon UniVersity
Pittsburgh, PennsylVania 15213
Figure 1. Structural diagram of [Ni(PS3*)(CO)]1- 1. Selected bond
distances (Å) and angles (deg): Ni-S1, 2.352(6); Ni-S2, 2.274(5);
Ni-S3, 2.312(6); Ni-C37, 1.75(3); Ni-P1, 2.089(6); C37-O1, 1.15-
(2); S1-Ni-S2, 122.6(2); S1-Ni-S3, 109.8(2); S2-Ni-S3, 124.2-
(2); S1-Ni-P1, 82.6(2); S2-Ni-P1, 83.8(2); S3-Ni-P1, 85.1(2);
S1-Ni-C37, 98.1(9); S2-Ni-C37, 92.8(8); S3-Ni-C37, 97.9(8);
P1-Ni-C37, 176.4(8).
ReceiVed June 11, 1996
Carbon monoxide is a substrate for two distinct reactions
catalyzed by the iron-nickel-containing enzyme carbon mon-
oxide dehydrogenase (CODH).1,2 The oxidation of CO to CO2
occurs at one site (center C) while CO combines with a methyl
group to form an acetyl group at the second site (center A).
Both of these reactions occur at reaction centers that involve
closely coupled Ni and Fe centers. Recent vibrational studies
have suggested that the CO is bound to iron and not to nickel
at center A and that nickel is involved in the CO oxidation at
center C.2 CO has also been used as an inhibitor and a
spectroscopic marker for the nickel-iron-containing hydroge-
nase enzymes.3 Two distinct CO adducts of the nickel-iron
hydrogenases have been spectroscopically detected: (1) an EPR
active form which displays hyperfine couplings indicating direct
Ni-CO coordination4 and (2) a postulated Ni(II)-CO form
Subsequent addition of [(n-Bu)4N]Br provides crystalline [(n-
Bu)4N][Ni(PS3*)(CO)] (1) in good yield.9 [(n-Bu)4N][Ni-
(PS3*)(CO)] was shown to be diamagnetic and to exhibit an
IR stretch at 2029 cm-1 assigned to the Ni(II)-CO center.
The X-ray structure of [(n-Bu)4N][Ni(PS3*)(CO)] (Figure 1)
reveals a distorted trigonal bipyramidal structure with the CO
in the axial position trans to the phosphorus atom.10 The three
equatorial thiolate ligands show a distortion from rigorous C3
symmetry with S-Ni-S angles of 122.6(2), 109.8(2), and
124.2(2)° and Ni-S distances of 2.352(6), 2.274(5), and 2.312-
(6) Å. The Ni center is situated 0.3 Å out of the plane defined
by the three S atoms and toward the CO ligand. The Ni(II)-S
distance is 0.07 Å longer than the corresponding distances in
[NiIII(PS3*)(N-methylimidazole)], which is consistent with the
anticipated difference in metal-sulfur distances of Ni(II)/Ni-
(III) oxidation levels.8b
[(n-Bu)4N][Ni(PS3*)(CO)] is the first example of a structur-
ally characterized Ni-CO complex with thiolate ligands.
Nickel(I) thiolate-CO complexes have been generated in
solution but have not been isolated.11 It is noted that Ni(II)-
CO complexes with any type of ligand are rare.12 The axial
coordination of the CO in 1 contradicts the molecular orbital
prediction of a preference for equatorial coordination of π-acid
ligands in trigonal bipyramidal d8 compounds.13 Examples are
known for both axial and equatorial coordination of CO in
trigonal bipyramidal Ni(II) compounds. In NiX2(CO)(PMe3)2
(X ) Cl, I)12a,b the CO occupies an equatorial position, while
in NiI2(CO)(1,1′-bis(dimethylarsine)ferrocene)12c the CO coor-
dinates in the axial position. The axial coordination of CO in
the latter compound was rationalized to result from the constraint
of the bidentate arsine ligand. Likewise, the coordination of
which displays a CO stretch at 2060 cm-1 5
. The recent X-ray
structure determination of the nickel-iron-containing hydro-
genase revealed that the nickel is bridged by two cysteines to
a second metal which is presumably iron.6 In both the
hydrogenase and CODH enzymes substantial cysteine coordina-
tion to the metal centers has been established or suggested.6,7
We report the synthesis and characterization of the first example
of a nickel(II) thiolate-CO complex and its Fe(II) analog, which
is an unprecedented paramagnetic Fe(II)-CO complex.
Nickel complexes of the tripod phosphine trithiolate ligand
tris(2-thiophenyl)phosphine (PS3) and its sterically hindered
analog tris(3-phenyl-2-thiophenyl)phosphine (PS3*) have been
recently investigated.8 The reaction of Ni(acac)2 with Li3[PS3*]
in MeOH generates a yellow-brown solution which changes to
a deep green color upon the addition of carbon monoxide.
(1) (a) Ragsdale, S. W. Crit. ReV. Biochem. Mol. Biol. 1991, 26, 261-
300. (b) Xia, J.; Lindahl, P. A. J. Am. Chem. Soc. 1996, 118, 483-484,
and reference therein.
(2) (a) Qiu, D.; Kumar, M.; Ragsdale, S. W.; Spiro, T. G. Science
(Washington, D. C.) 1994, 264, 817-819. (b) Kumar, M.; Qiu, D.; Spiro,
T. G.; Ragsdale, S. W. Science (Washington, D. C.) 1995, 270, 628-630.
(c) Qiu, D.; Kumar, M.; Ragsdale, S. W.; Spiro, T. G. J. Am. Chem. Soc.
1995, 117, 2653-2654. (d) Hu, Z.; Spangler, N. J.; Anderson, M. E.; Xia,
J.; Ludden, P. W.; Lindahl, P. A.; Mu¨nck, E. J. Am. Chem. Soc. 1996, 118,
830-845.
(3) Albracht, S. P. J. Biochim. Biophys. Acta 1994, 1188, 167-204.
(4) van der Zwaan, J. W.; Coremans, J. M. C. C.; Bouwens, E. C. M.;
Albracht, S. P. J. Biochim. Biophys. Acta 1990, 1041, 101-110.
(5) Bagley, K. A.; Van Garderen, C. J.; Chen, M.; Duin, E. C.; Albracht,
S. P. J.; Woodruff, W. H. Biochemistry 1994, 33, 9229-9236. Bagley, K.
A.; Duin, E. C.; Roseboom, W.; Albracht, S. P. J.; Woodruff, W. H.
Biochemistry 1995, 34, 5527-5535.
(6) Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.;
Fontecilla-Camps, J. C. Nature (London) 1995, 373, 580-587.
(7) Xia, J.; Dong, J.; Wang, S.; Scott, R. A.; Lindahl, P. A. J. Am. Chem.
Soc. 1995, 117, 7065-7070.
(8) (a) Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992,
114, 6588. (b) Nguyen, D. H.; Millar, M. Submitted for publication.
(9) Electronic spectrum of 1 in DMF (λ, nm (ꢀM)): 297 (10 300 M-1
cm-1), 368 (6250), 722 (913).
(10) Crystal data for 1 (NiPS3NOC53H60): monoclinic, P21/c (no. 14),
a ) 16.816(4) Å, b ) 16.179(2) Å, c ) 17.901(4) Å, â ) 97.94(1)°,
V)4823(1) Å3, Z ) 4. A total of 2470 unique reflections with I > 3σ(I)
were refined to R ) 0.063 and Rw ) 0.094.
(11) Yamamura, T.; Sakurai, S.; Arai, H.; Miyamae, H. J. Chem. Soc.,
Chem. Commun. 1993, 1656. Marganian, C. A.; Vazir, H.; Baidya, N.;
Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 1995, 117, 1584-
1594.
(12) (a) Saint-Joly, C.; Mari, A.; Gleizes, A.; Dartiguenave, M.;
Dartiguenave, Y.; Galy, J. Inorg. Chem. 1980, 19, 2403-2410. (b) Elbaze,
G.; Dahan, F.; Dartiguenave, M.; Dartiguenave, Y. Inorg. Chim. Acta 1984,
85, L3-L5. (c) Pierpont, C. G.; Eisenberg, R. Inorg. Chem. 1972, 4, 828-
832. (d) Janikowski, S. K.; Radonovich, L. J.; Groshens, T. J.; Klabunde,
K. J. Organometallics 1985, 4, 396-398. (e) Zebrowski, J. P.; Hayashi, R.
K.; Dahl, L. F. J. Am. Chem. Soc. 1993, 115, 1142-1144.
(13) (a) Rossi, A. R.; Hoffmann R. Inorg. Chem. 1975, 14, 365-374.
(b) Macgregor, S. A.; Lu, Z.; Eisenstein, O.; Crabtree, R. H. Inorg. Chem.
1994, 33, 3616-3618.
S0002-7863(96)01968-3 CCC: $12.00 © 1996 American Chemical Society