Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and
ACKNOWLEDGMENT
beyond. Chem. Soc. Rev. 2012, 41, 3511–3522. (f) Ryan, S. J.; Candish, L.;
Lupton, D. W. Acyl anion free N-heterocyclic carbene organocatalysis.
Chem. Soc. Rev. 2013, 42, 4906–4917. (g) Bode, J. W. Carbene catalysis:
An internal affair. Nat. Chem. 2013, 5, 813–815. (h) Hopkinson, M. N.;
Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic
carbenes. Nature 2014, 510, 485–496. (i) Flanigan, D. M.; Romanov-
Michailidis, F.; White, N. A.; Rovis, T. Organocatalytic Reactions
Enabled by N-Heterocyclic Carbenes. Chem. Rev. 2015, 115, 9307-9387.
(j) Yetra, S. R.; Patra, A.; Biju, A. T. Recent Advances in the N-
Heterocyclic Carbene (NHC)-Organocatalyzed Stetter Reaction and
Related Chemistry. Synthesis 2015, 47, 1357-1378. (k) Wang, M. H.;
Scheidt, K. A. Cooperative Catalysis and Activation with N-Heterocyclic
Carbenes. Angew. Chem. Int. Ed. 2016, 55, 14912-14922. (l) Mondal, S.;
Yetra, S. R.; Mukherjee, S.; Biju, A. T. NHC-Catalyzed Generation of
α,β-Unsaturated Acylazoliums for the Enantioselective Synthesis of
Heterocycles and Carbocycles. Acc. Chem. Res. 2019, 52, 425-436.
(10) (a) Lu, S.; Poh, S. B.; Siau, W.-Y.; Zhao, Y. Kinetic Resolution of
Tertiary Alcohols: Highly Enantioselective Access to 3-Hydroxy-3-
Substituted Oxindoles. Angew. Chem., Int. Ed. 2013, 52, 1731-1734. (b)
Lu, S.; Poh, S. B.; Zhao, Y. Kinetic Resolution of 1,1’-Biaryl-2,2’-Diols
and Amino Alcohols through NHC-Catalyzed Atroposelective Acylation.
Angew. Chem., Int. Ed. 2014, 53, 11041-11045. (c) Lu, S.; Song, X.; Poh,
S. B.; Yang, H.; Wong, M. W.; Zhao, Y. Access to Enantiopure
Triarylmethanes and 1,1-Diarylalkanes by NHC-Catalyzed Acylative
Desymmetrization. Chem.- Eur. J. 2017, 23, 2275-2281. (d) Lu, S.; Poh,
S. B.; Rong, Z.-Q.; Zhao, Y. NHC-Catalyzed Atroposelective Acylation of
Phenols: Access to Enantiopure NOBIN Analogs by Desymmetrization.
Org. Lett. 2019, 21, 6169-6172.
(11) For significant examples on NHC-catalyzed intramolecular
hydroacylation of unactivated alkynes, see: (a) Biju, A. T.; Wurz, N. E.;
Glorius, F. N-Heterocyclic Carbene-Catalyzed Cascade Reaction
Involving the Hydroacylation of Unactivated Alkynes. J. Am. Chem. Soc.
2010, 132, 5970-5971. (b) Padmanaban, M.; Biju, A. T.; Glorius, F.
Efficient Synthesis of Benzofuranones: N-Heterocyclic Carbene
(NHC)/Base-Catalyzed Hydroacylation-Stetter-Rearrangement Cascade.
Org. Lett. 2011, 13, 5624-5627. (c) Biju, A. T.; Kuhl, N.; Glorius, F.
Extending NHC-Catalysis: Coupling Aldehydes with Unconventional
Reaction Partners. Acc. Chem. Res. 2011, 44, 1182-1195. (d) Zhao, M.;
Liu, J.-L.; Liu, H.-F.; Chen, J.; Zhou, L. Construction of Bisbenzopyrone
via N-Heterocyclic Carbene Catalyzed Intramolecular Hydroacylation–
Stetter Reaction Cascade. Org. Lett. 2018, 20, 2676-2679.
We are grateful for the generous financial support from Ministry
of Education of Singapore (R-143-000-A94-112), National
University of Singapore (R-143-000-A57-114) and the
Fundamental Research Funds for the Central Universities (05150-
19GH020157).
REFERENCES
9
(1) For selected reviews, see: (a) LaPlante, S. R.; Fader, L. D.; Fandrick,
K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards,
P. J. Assessing Atropisomer Axial Chirality in Drug Discovery and
Development. J. Med. Chem. 2011, 54, 7005–7022. (b) Nguyen, T. Giving
Atropisomers Another Chance. Chem. & Eng. News 2018, vol 96, i33.
(2) Kupchan, S. M.; Britton, R. W.; Ziegler, M. F.; Gilmore, C. J.;
Restivo, R. J.; Bryan, R. F. Steganacin and Steganangin, Novel
Antileukemic Lignan Lactones from Steganotaenia araliacea. J. Am. Chem.
Soc. 1973, 95, 1335.
(3) David, B.; Sévent, T.; Morgat, M.; Guénard, D.; Moisand, A.;
Tollon, Y.; Thoison, O.; Wright, M. Rhazinilam Mimics the Cellular
Effects of Taxol by Different Mechanisms of Action. Cell Motil.
Cytoskeleton 1994, 28, 317-326.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) For a recent review, see: Shen, Y.; Chen, C.-F. Helicenes: Synthesis
and Applications. Chem. Rev. 2012, 112, 1463-1535.
(5) For selected reviews, see: (a) Bringmann, G.; Mortimer,A. J. P.;
Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Atroposelective
synthesisi of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 2005,
44, 5384-5427. (b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Total
synthesis of chiral biaryl natural products by asymmetric biaryl coupling.
Chem. Soc. Rev. 2009, 38, 3193-3207. (c) Bringmann, G.; Gulder, T.;
Gulder, T. A. M.; Breuning, M. Atroposelective total synthesis of axially
chiral biaryl natural products. Chem. Rev. 2011, 111, 563-639. (d)
Bencivenni, G. Organocatalytic strategies for the synthesis of axially
chiral compounds. Synlett 2015, 26, 1915-1922. (e) Wencel-Delord, J.;
Panossian, A.; Leroux, F. R.; Colobert, F. Recent advances and new
concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc.
Rev. 2015, 44, 3418-3430. (f) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.;
Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric
catalytic reactions with transition metals. Coord. Chem. Rev. 2016, 308,
131-190. (g) Wang, Y.-B.; Tan, B. Construction of Axially Chiral
Compounds via Asymmetric Organocatalysis. Acc. Chem. Res. 2018, 51,
534-547.
(6) (a) Ohmori, K.; Kitamura, M.; Suzuki, K. From Axial Chirality to
Central Chiralities: Pinacol Cyclization of 2,2'-Biaryldicarbaldehyde to
trans-9,10-Dihydrophenanthrene-9,10-diol. Angew. Chem., Int. Ed. 1999,
38, 1226-1229. (b) Hall, D. M.; Turner, E. E. 9,10-Dihydrophenanthrenes.
III. Optically active 9,10-dihydro-3,4-5,6-dibenzophenanthrene. J. Chem.
Soc., 1955, 1242–1251.
(7) (a) Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi, K.; Hirano, M.
Rh-Catalyzed Synthesis of Helically Chiral and Ladder-Type Molecules
via [2 + 2 + 2] and Formal [2 + 1 + 2 + 1] Cycloadditions Involving C−C
Triple Bond Cleavage. J. Am. Chem. Soc. 2007, 129, 12078-12079. (b)
Shibuya, T.; Shibata, Y.; Noguchi, K.; Tanaka, K. Palladium -Catalyzed
Enantioselective Intramolecular Hydroarylation of Alkynes To Form
Axially Chiral 4-Aryl-2-Quinolinones. Angew. Chem. Int. Ed. 2011, 50,
3963-3967. (c) Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.;
Tanaka, K. Enantioselective Synthesis and Enhanced Circularly Polarized
Luminescence of S-Shaped Double Azahelicenes. J. Am. Chem.Soc. 2014,
136, 5555-5558.
(12) For a representative example, see: De Sarkar, S.; Grimme, S.;
Studer, A. NHC Catalyzed Oxidations of Aldehydes to Esters:
Chemoselective Acylation of Alcohols in Presence of Amines. J. Am.
Chem. Soc. 2010, 132, 1190-1191.
(13) The overall moderate yield of 6 was due to a competitive
intramolecular reaction of 5 (see SI for details).
(14) It is noteworthy that the ortho-substituent in these biaryls is
important for its configurational stability. The cleavage of lactone in 6c,
e.g., led to the formation of biaryl product with a low dr of 1.5:1.
(15) For a recent example, see: Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei,
G.-J.; Li, Y.; Shi, F. Design and Enantioselective Construction of Axially
Chiral Naphthyl-Indole Skeletons. Angew. Chem., Int. Ed. 2017, 56, 116-
121.
(16) For selected recent literature on NHC-catalyzed cycloadditions
involving ortho-quinone methides, see: (a) Izquierdo, J.; Orue, A.;
Scheidt, K. A.
A
Dual Lewis Base Activation Strategy for
Enantioselective Carbene-Catalyzed Annulations. J. Am. Chem. Soc. 2013,
135, 10634-10637. (b) Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.;
Mishra, R. K.; Scheidt, K. A. Enantioselective Annulations for
Dihydroquinolones by in Situ Generation of Azolium Enolates. J. Am.
Chem. Soc. 2014, 136, 10589-10592.
(17) Lu, S.; Ong, J.-Y.; Poh, S. B.; Tsang, T.; Zhao, Y. Transition-
Metal-Free Decarboxylative Propargylic Substitution/Cyclization with
either Azolium Enolates or Acyl Anions. Angew. Chem., Int. Ed. 2018, 57,
5714-5719.
(18) (a) Zhao, Y.; Truhlar, D. G. The MO6 suite of density functionals
for main group thermochemistry, thermochemical kinetics, noncovalent
interactions, excited states, and transition elements: two new functionals
and systematic testing of four MO6-class functionals and 12 other
functionals. Theor. Chem. Acc. 2008, 120, 215-241. (b) Yang, H.; Wong,
M. W. Oxyanion Hole Stabilization by C–H···O Interaction in a Transition
(8) Kӧtzner, L.; Webber, M. J.; Martínez, A.; De Fusco, C.; List, B.
Asymmetric Catalysis on the Nanoscale: The Organocatalytic Approach to
Helicenes. Angew. Chem., Int. Ed. 2014, 53, 5202-5205.
(9) For selected reviews, see: (a) Enders, D.; Niemeier, O.; Henseler,
A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 2007, 107,
5606–5655. (b) Marion, N.; Díez-González, S.; Nolan, S. P. N-
Heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. 2007, 46,
2988–3000. (c) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A.
A
continuum of progress: applications of N-hetereocyclic carbene
catalysis in total synthesis. Angew. Chem. Int. Ed. 2012, 51, 11686–11698.
(d) Vora, H. U.; Wheeler, P.; Rovis, T. Exploiting acyl and enol azolium
intermediates via N-heterocyclic carbene-catalyzed reactions of α-
reducible aldehydes. Adv. Synth. Catal. 2012, 354, 1617–1639. (e) Bugaut,
ACS Paragon Plus Environment