6
Tetrahedron
50 mg in 50 ml 0.5M aqueous NaCl solution), and found it in
References and notes
fair agreement with previous observations.3 The pH of GO
remains fairly similar when measured after the reaction and also
of a mixture of n-pentane thiol and GO in water. On the other
hand, thioacetal formation is greatly retarded when the reaction is
carried out in water or in other organic solvents (Table 1, entries
7, 8 and 9). GO also gave positive Carius test and Lassaigne's test
signifying qualitatively the presence of S-containing functional
groups. The above results suggest that GO is an acid catalyst and
we tend to believe that the acidity of GO might be originating
from a combination of both carboxyl and organosulfate groups,
which is more pronounced in neat. Mechanistically, surface
active acidic functional groups of GO facilitate activation of the
aldehyde carbonyl group, more effectively in neat condition, and
subsequent nucleophilic attack by the thiol results in the eventual
formation of thioacetal.
1. Dreyer, D. R.; Bielawski, C. W. Chem. Sci. 2011, 2, 1233-1240.
2. (a) Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H.
Chem. Rev. 2014, 114, 6179-6212; (b) Eigler, S.; Hirsch, A.
Angew. Chem., Int. Ed. 2014, 53, 7720-7738; (c) Su, C.; Loh, K.
P. Acc. Chem. Res. 2013, 46, 2275-2285.
3. Szabo, T.; Tombacz,; Illes, E. E.; Dekany, I. Carbon 2006, 44,
537-545.
4. Boehm, H. P.; Clauss, A.; Fischer, G.; Hofmann, U. Fifth
Conference on Carbon; Pergamon: Oxford, 1962; pp 73-80.
5. (a) Dreyer, D. R.; Jia, H.-P.; Bielawski, C. W. Angew. Chem., Int.
Ed. 2010, 49, 6813-6816; b) Mirza-Aghayan, M.; Kashef-Azar,
E.; Boukherroub, R. Tetrahedron Lett. 2012 , 53, 4962-4965; (c)
Dreyer, D. R.; Jia, H.-P.; Todd, A. D.; Geng J.; Bielawski, C. W.
Org. Biomol. Chem. 2011, 9, 7292-7295; (d) Huang, H.; Huang,
J.; Liu, Y.-M; He, H.-Y.; Cao, Y.; Fan, K.-N. Green Chem. 2012,
14, 930-934; (e) Jia, H.-P.; Dreyer, D. R.; Bielawski, C. W. Adv.
Synth. Catal. 2011, 353, 528-532.
6.
(a) Wu, Y.-C.; Zhu, J. J. Org. Chem. 2008, 73, 9522-9524; (b)
Varala, R.; Nuvula, S.; Adapa, S. R. Bull. Korean Chem. Soc.
2006, 27, 1079-1082; (c) De, S. K. Adv. Synth. Catal. 2005, 347,
673-676; (d) De, S. K. Tetrahedron Lett. 2004, 45, 1035-1036; (e)
De, S. K. Tetrahedron Lett. 2004, 45, 2339-2341; (f) Srivastava,
N. S.; Dasgupta K. Banik, B. K. Tetrahedron Lett. 2003, 44, 1191-
1193; (g) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2002, 43,
1341-1350; (h) Muthusamy, S.; Babu, S. A.; Gunanathan, C.
Tetrahedron 2002, 58, 7897-7901; (i) Mondal, E.; Sahu, P. R.;
Bose, G.; Khan, A. T. Tetrahedron Lett. 2002, 43, 2843-2846; (j)
Muthusamy, S.; Babu, S. A.; Gunanathan, C. Tetrahedron Lett.
2001, 42, 359-362; (k) Firouzabadi, H.; Iranpoor N.; Hazarkhani,
H. J. Org. Chem. 2001, 66, 7527-7529; (l) Yadav, J. S.; Reddy, B.
V. S.; Pandey, S. K. Synlett 2001, 238-239; (m) Karimi, B.;
Seradj, H. Synlett 2000, 805-806; (n) Firouzabadi, H.; Iranpoor N.;
Karimi, B. Synthesis 1999, 58-60; (o) Ravindranathan, T.; Chavan,
S. P.; Dantale, S. W. Tetrahedron Lett. 1995, 36, 2285-2288; (p)
Mandal, P. K.; Roy, S. C. Tetrahedron 1995, 51, 7823-7828; (q)
Saraswathy, V. G.; Sankararaman, S. J. J. Org. Chem., 1994, 59,
4665-4670; (r) Kumar, V.; Dev, S. Tetrahedron Lett. 1983, 24,
1289-1292; (s) Burczyk, B.; Kortylewicz, Z. Synthesis 1982, 831-
833; (t) Ong, B. S. Tetrahedron Lett. 1980, 21, 4225-4228; (u)
Fieser, L. F. J. Am. Chem. Soc. 1954, 76, 1945-1947; (v) Djerassi
C.; Gorman, M. J. Am. Chem. Soc. 1953, 75, 3704-3708; (x)
Ralls, J. W.; Dobson, R. M. Reigel, B. J. Am. Chem. Soc. 1949,
71, 3320-3325.
The reusability of the GO as heterogeneous acid catalyst was
examined with the combination of reactants: p-anisaldehyde and
n-pentanethiol in 1:2.2 ratios at room temperature. The GO was
recovered from the first batch of reaction by centrifugation and
washed with diethyl ether, dried and reused for subsequent four
batches of reactions. In all recycling experiments carried out at
room temperature, appreciable conversions were achieved
(Fig.1). A comparison of the FT-IR spectra of the GO before and
after use does not indicate any changes of the absorption bands,
signifying that the catalyst remain same after the reaction (See
ESI S3.1, Figure 4)
7.
(a) Ali, M. H.; Gomes, M. G. Synthesis 2005, 1326-1332; (b)
Firouzabadi, H.; Iranpoor, N.; Jafari, A. A.; Jafari, M. R. J. Mol.
Catal. A: Chem. 2006, 247, 14-18; (c) Gogoi, S.; Borah J. C.;
Barua, N.C. Synlett 2004, 1592-1594; (d) Ballini, R.; Bosica, G.;
Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G. Synthesis 2001,
1826-1829; (e) Aoyama, T.; Takido, T.; Kodomar, M. Synlett
2004, 2307-2310; (f) Shirini F.; Albadi, J. Bull. Korean Chem.
Soc. 2010, 31, 1119-1120; (g) Pore, D. M.; Desai, U. V.; Mane, R.
B.; Wadgaonkar, P. P. Indian J. Chem. 2006, 45B, 1291-1295; (h)
Jung, N.; Grässle, S. D.; Lütjohann, S.; Bräse, S. Org. Lett. 2014,
16, 1036-1039; (i) Shaohu, B.; Lu, C.; Yongjun, J.; Jianguo, Y.
Chin. J. Chem. 2010, 28, 2119-2121; (j) Lenardao, E. J.; Borges,
E. L.; Mendes, S. R.; Perin, G.; Jacob, R. G. Tetrahedron Lett.
2008, 49, 1919-1921.
Fig. 1 Recyclability of GO in the thioacetalization of p-anisaldehyde and
n-pentanethiol
In summary, GO was found to catalyze the formation of
thioacetal from a neat mixture of aldehyde and thiol under mild,
solvent-free and aerobic conditions. Notable features of the
methodology described herein are: operational simplicity, nil or
negligible quantity of disulfide formation, applicability to a large
variety of aryl/heteroaryl aldehydes, chemoselectivity,
recyclability and environmental compatibility. Thus it provides a
practical approach for the preparation of open chain, cyclic and
unsymmetrical dithioacetals. The present method also
demonstrates that controlled loading of GO in combination with
reaction conditions could lead to the diversity in reaction types as
well as the formation of the products, and is likely to spur more
catalytic applications.
8.
Dhakshinamoorthy, A.; Alvaro, M.; Puche, M.; Fornes, V.;
Garcia, H. ChemCatChem. 2012, 4, 2026-2030.
9. Basu, B.; Kundu S.; Sengupta, D. RSC Adv. 2013, 3, 22130-
22134.
10. (a) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,
1339; (b) Layek, R. K.; Samanta, S.; Chatterjee D. P.; Nandi, A.
K. Polymer 2010, 51, 5846-5856.
11. (a) Zhuo, Q.; Ma, Y.; Gao, J.; Zhang, P.; Xia, Y.; Tian, Y.; Sun,
X.; Zhong, J.; Sun, X. Inorg. Chem. 2013, 52, 3141-3147; (b)
Dhakshinamoorthy, A.; Alvaro, M.; Concepcion, P.; Fornes, V.;
Garcia, H. Chem. Commun. 2012, 48, 5443–5445.
Acknowledgments
12. (a) Papernaya, L. K.; Levanova, E. P.; Klyba, L. V.; Albanov, A.
I. Russ. J. Org. Chem. 2009, 45, 1036-1039; (b) Papernaya, L. K.;
Levanova, E. P.; Sukhomazova, E. N.; Albanov, A. I.; Deryagina,
E. N. Russ. J. Org. Chem. 2005, 41, 952-955.
We thank the Department of Science and Technology, India for
financial support (Grant No. SR/S1/OC-86). BR and DS thank UGC,
and CSIR, New Delhi respectively, for award of their fellowships.