92
I. Kadota et al. / Tetrahedron Letters 47 (2006) 89–92
90% overall yield.20 Diene 23 was subjected to the ring-
closing metathesis using 15 to furnish 24 in 90% yield.
Finally, hydrogenation of 24 afforded the FGHI ring
segment 25 in 98% yield.21 The stereochemistry of the
methyl group was confirmed by NOE experiments.
9. Kadota, I.; Sakaihara, T.; Yamamoto, Y. Tetrahedron
Lett. 1996, 37, 3195–3198.
10. Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda,
K.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 46–47.
11. For the original conditions, see: (a) Dahanukar, V. H.;
Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317–8320; (b)
Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem. 2000,
65, 191–198; (c) Kopecky, D. J.; Rychnovsky, S. D. Org.
Synth. 2003, 80, 177–183.
12. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953–956.
13. Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Chem. Soc.,
Chem. Commun. 1976, 716–717.
In conclusion, we have achieved a convergent and
stereoselective synthesis of the FGHI ring segment of
yessotoxin 1 via the intramolecular allylation of an
a-chloroacetoxy ether and ring-closing metathesis.
Further studies toward the total synthesis of 1 are now
in progress in our laboratories.
14. Stereoselective hydrogenation of the related cyclic ether
using Crabtreeꢀs catalyst has been reported, see: Fujiwara,
K.; Koyama, Y.; Doi, E.; Shimawaki, K.; Ohtaniuchi, Y.;
Takemura, A.; Souma, S.; Murai, A. Synlett 2002, 1496–
1499.
Acknowledgments
This work was financially supported by a Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan.
15. Fujiwara, K.; Tsunashima, M.; Awakura, D.; Murai, A.
Tetrahedron Lett. 1995, 36, 8263–8266.
16. For the palladium-catalyzed carbonylation of enol tri-
flates, see: Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron
Lett. 1985, 26, 1109–1112.
17. Hydroboration–oxidation of the exo-olefin prepared from
12 afforded the undesired stereoisomer as shown below.
References and notes
1) BH3·SMe2
2) H2O2, NaOH
H
H
1. (a) Murata, M.; Kumagai, M.; Lee, J. S.; Yasumoto, T.
Tetrahedron Lett. 1987, 28, 5869–5872; (b) Satake, M.;
Terasawa, K.; Kadowaki, Y.; Yasumoto, T. Tetrahedron
Lett. 1996, 37, 5955–5958.
2. For the synthetic studies of 1, see: (a) Mori, Y.; Hayashi,
H. Tetrahedron 2002, 58, 1789–1797; (b) Suzuki, K.;
Nakata, T. Org. Lett. 2002, 4, 3943–3946; (c) Mori, Y.;
Takase, T.; Noyori, R. Tetrahedron Lett. 2003, 44, 2319–
2322; (d) Oishi, T.; Watanabe, K.; Murata, M. Tetra-
hedron Lett. 2003, 44, 7315–7319; (e) Watanabe, K.;
Suzuki, M.; Murata, M.; Oishi, T. Tetrahedron Lett. 2005,
46, 3991–3995.
H
H
O
O
O
O
O
O
H
Me
H
H
Me
H
HO
18. The hydrogenation of 18 under the standard conditions
gave the corresponding enol ether via olefin migration.
H
H
H
H
O
O
O
O
H2
Pd-C
O
O
H
Me
H
H
H
MPMO
MPMO
3. Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am.
Chem. Soc. 2002, 124, 3562–3566.
4. Kadota, I.; Ueno, H.; Yamamoto, Y. Tetrahedron Lett.
2003, 44, 8935–8938.
5. For a previous synthesis of the FGHI ring segment of 1,
see Ref. 2e.
6. Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang,
C.-K. Tetrahedron 1990, 46, 4517–4552.
7. Nicolaou, K. C.; Hwang, C.-K.; Marron, B. E.; DeFreses,
S. A.; Couladouros, E. A.; Abe, Y.; Carrol, P. J.; Snyder,
J. P. J. Am. Chem. Soc. 1990, 112, 3040–3054.
8. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yama-
guchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.
19. Reduction of iodide with metal hydrides such as LiAlH4
resulted in failure.
20. Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem.
1976, 41, 1485–1486.
21. A referee pointed out that hydrogenation of the sterically
hindered olefin 24 seems to be problematic, or olefin
migration may occur under the reaction conditions. So we
carried out the hydrogenation of 24 conditions. Although
the reaction was relatively slow, neither olefinic migration
nor epimerization of the methyl group was observed in
this reaction. The desired compound 25 was obtained as
the sole product.