Soluble Synthetic Multiporphyrin Arrays. 1
J. Am. Chem. Soc., Vol. 118, No. 45, 1996 11167
The challenge of creating model systems for energy-transfer
studies has led to many different approaches. Energy transfer
in assemblies of porphyrins has been studied in lipid bilayers,2
amorphous films,3 monolayers,4 coated microspheres,5 and
Langmuir-Blodgett multilayers.6 These non-covalent assem-
blies are synthesized easily, involve large numbers of visible-
absorbing chromophores, but often afford insufficient structural
control. Energy-transfer processes among pendant chro-
mophores in polymers have been characterized.7 Covalently-
linked systems for tests of the Forster theory of resonance energy
transfer have been developed that involve two UV-absorbing
chromophores held at defined distances.8 A synthetic hemo-
globin has been prepared containing four zinc-chlorophyllide
molecules at defined locations in place of the hemes.9 An ideal
model system would afford the dual capabilities of incorporating
a large and exact number of visible-absorbing pigments of
known photophysical properties, and exercising precise struc-
tural control over the entire ensemble of pigments.
Two promising approaches for achieving this ideal and
thereby addressing the issues outlined above are the self-
assembly of pigments bearing molecular recognition units and
the synthesis of covalent arrays of pigments. Balzani and co-
workers have pioneered the self-assembly of visible-absorbing
metal coordination compounds.10 A few energy transfer model
systems have been prepared involving the self-assembly of
porphyrins11 or porphyrins with other chromophores such as
sapphyrins12 or dansyl amides.13 Far more covalent arrays
containing two or more porphyrins have been prepared and their
energy transfer properties characterized.14-16 In addition,
covalent systems have been prepared containing porphyrins and
energy transfer donors such as anthracenyl polyenes,17 boron-
dipyrromethenes,16,18 carbocyanines,19 carotenoids,20 polyynes,21
and ruthenium coordination complexes (triplet transfer),22 as
have covalent systems containing porphyrins and energy transfer
acceptors such as tricarbocyanines,19 carotenoids (triplet trans-
fer),20 chlorins,23 phthalocyanines,24 and sapphyrins.25 A recent
system describes chlorin-chlorin energy transfer.26 Moore has
devised a dendritic antenna that is architecturally defined with
a vectorial organization of numerous phenylethyne-based chro-
mophores, though the absorption is predominantly in the
ultraviolet.27 In order to investigate visible light-harvesting
phenomena in a systematic manner, we have developed a
covalent building block approach for the synthesis of multi-
porphyrin arrays.
(2) Clapp, P. J.; Armitage, B.; Roosa, P.; O’Brien, D. F. J. Am. Chem.
Soc. 1994, 116, 9166-9173. Nango, M.; Iida, K.; Kawakita, T.; Matsuura,
M.; Harada, Y.; Yamashita, K.; Tsuda, K.; Kimura, Y. J. Chem. Soc., Chem.
Commun. 1992, 545-547.
(3) Kampas, F. J.; Gouterman, M. J. Luminescence 1976, 14, 121-129.
(4) Tweet, A. G.; Bellamy, A. D.; Gaines, G. L., Jr. J. Chem. Phys. 1964,
41, 2068-2077. Shimomura, M.; Hamada, Y.; Onosato, T. Thin Solid Films
1988, 160, 287-297.
(5) Cellarius, R. A.; Mauzerall, D. Biochim. Biophys. Acta 1966, 112,
235-255.
(6) Langmuir, I.; Schaefer, V. J. J. Am. Chem. Soc. 1937, 59, 2075-
2076. Schick, G. A.; Schreiman, I. C.; Wagner, R. W.; Lindsey, J. S.;
Bocian, D. F. J. Am. Chem. Soc. 1989, 111, 1344-1350.
(7) Guillet, J. In Polymer Photophysics and Photochemistry. An Introduc-
tion to the Study of Photoprocesses in Macromolecules, Cambridge
University Press: New York, 1985. Webber, S. E. Chem. ReV. 1990, 90,
1469-1482. Strouse, G. F.; Worl, L. A.; Younathan, J. N.; Meyer, T. J. J.
Am. Chem. Soc. 1989, 111, 9101-9102. Watkins, D. M.; Fox, M. A. J.
Am. Chem. Soc. 1994, 116, 6441-6442.
(8) Haugland, R. P.; Yguerabide, J.; Stryer, L. Proc. Natl. Acad. Sci.
U.S.A. 1969, 63, 23-30. Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci.
U.S.A. 1967, 58, 719-726.
(9) Moog, R. S.; Kuki, A.; Fayer, M. D.; Boxer, S. G. Biochemistry 1984,
23, 1564-1571. Kuki, A.; Boxer, S. G. Biochemistry 1983, 22, 2923-
2933.
(10) Balzani, V.; Ballardini, R. Photochem. Photobiol. 1990, 52, 409-
416.
(11) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1995,
117, 704-714. Hunter, C. A.; Sarson, L. D. Angew. Chem., Int. Ed. Engl.
1994, 33, 2313-2316.
(12) Kra´l, V.; Springs, S. L.; Sessler, J. L. J. Am. Chem. Soc. 1995,
117, 8881-8882.
(13) Tecilla, P.; Dixon, R. P.; Slobodkin, G.; Alavi, D. S.; Waldeck, D.
H.; Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 9408-9410.
(14) (a) Schwarz, F. P.; Gouterman, M.; Muljiani, Z.; Dolphin, D. H.
Bioinorg. Chem. 1972, 2, 1-32. (b) Anton, J. A.; Loach, P. A.; Govindjee
Photochem. Photobiol. 1978, 28, 235-242. (c) Selensky, R.; Holten, D.;
Windsor, M. W.; Paine, J. B., III; Dolphin, D.; Gouterman, M.; Thomas, J.
C. Chem. Phys. 1981, 60, 33-46. (d) Wasielewski, M. R.; Niemczyk, M.
P.; Svec, W. A. Tetrahedron Lett. 1982, 23, 3215-3218. (e) Mialocq, J.
C.; Giannotti, C.; Maillard, P.; Momenteau, M. Chem. Phys. Lett. 1984,
112, 87-93. (f) Regev, A.; Galili, T.; Levanon, H.; Harriman, A. Chem.
Phys. Lett. 1986, 131, 140-146. (g) Gonen, O.; Levanon, H. J. Chem. Phys.
1986, 84, 4132-4141. (h) Brookfield, R. L.; Ellul, H.; Harriman, A.; Porter,
G. J. Chem. Soc., Faraday Trans. 2 1986, 82, 219-233. (i) Davila, J.;
Harriman, A.; Milgrom, L. R. Chem. Phys. Lett. 1987, 136, 427-430. (j)
Noblat, S.; Dietrich-Buchecker, C. O.; Sauvage, J.-P. Tetrahedron Lett. 1987,
28, 5829-5832. Chardon-Noblat, S.; Sauvage, J.-P.; Mathis, P. Angew.
Chem., Int. Ed. Engl. 1989, 28, 593-595. (k) Rempel, U.; Von Maltzan,
B.; Von Borczyskowski, C. Chem. Phys. Lett. 1990, 169, 347-354. (l)
Osuka, A.; Maruyama, K.; Yamazaki, I.; Tamai, N. Chem. Phys. Lett. 1990,
165, 392-396. (m) Osuka, A.; Nagata, T.; Maruyama, K.; Mataga, N.;
Asahi, T.; Yamazaki, I.; Nishimura, Y. Chem. Phys. Lett. 1991, 185, 88-
94. (n) Gust, D.; Moore, T. A.; Moore, A. L.; Gao, F.; Luttrull, D.;
DeGraziano, J. M.; Ma, X. C.; Makings, L. R.; Lee, S-J.; Trier, T. T.;
Bittersmann, E.; Seely, G. R.; Woodward, S.; Bensasson, R. V.; Rouge´e,
M.; De Schryver, F. C.; Van der Auweraer, M. J. Am. Chem. Soc. 1991,
113, 3638-3649. (o) Gust, D.; Moore, T. A.; Moore, A. L.; Leggett, L.;
Lin, S.; DeGraziano, J. M.; Hermant, R. M.; Nicodem, D.; Craig, P.; Seely,
G. R.; Nieman, R. A. J. Phys. Chem. 1993, 97, 7926-7931. (p) Tamiaki,
H.; Nomura, K.; Maruyama, K. Bull. Chem. Soc. Jpn. 1993, 66, 3062-
3068. (q) Osuka, A.; Nakajima, S.; Maruyama, K.; Mataga, N.; Asahi, T.;
Yamazaki, I.; Nishimura, Y.; Ohno, T.; Nozaki, K. J. Am. Chem. Soc. 1993,
115, 4577-4589. (r) Sessler, J. L.; Capuano, V. L.; Harriman, A. J. Am.
Chem. Soc. 1993, 115, 4618-4628. (s) DeGraziano, J. M.; Liddell, P. A.;
Leggett, L.; Moore, A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. 1994,
98, 1758-1761. (t) Tamiaki, H.; Nomura, K.; Maruyama, K. Bull. Chem.
Soc. Jpn. 1994, 67, 1863-1871. (u) Harriman, A.; Heitz, V.; Ebersole, M.;
van Willigen, H. J. Phys. Chem. 1994, 98, 4982-4989. (v) Iida, K.; Nango,
M.; Okada, K.; Hikita, M.; Matsuura, M.; Kurihara, T.; Tajima, T.; Hattori,
A.; Ishikawa, S.; Yamashita, K.; Tsuda, K.; Kurono, Y. Bull. Chem. Soc.
Jpn. 1995, 68, 1959-1968. (w) Osuka, A.; Tanabe, N.; Kawabata, S.;
Yamazaki, I.; Nishimura, Y. J. Org. Chem. 1995, 60, 7177-7185.
Molecular Design
Synthetic porphyrins share many of the general structural,
chemical, redox, and photophysical features with the naturally-
(15) Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc.
1993, 115, 7519-7520.
(16) Wagner, R. W.; Lindsey, J. S. J. Am. Chem. Soc. 1994, 116, 9759-
9760.
(17) Effenberger, F.; Schlosser, H.; Bauerle, P.; Maier, S.; Port, H.; Wolf,
H. C. Angew. Chem., Int. Ed. Engl. 1988, 27, 281-284. Wurthner, F.;
Vollmer, M. S.; Effenberger, F.; Emele, P.; Meyer, D. U.; Port, H.; Wolf,
H. C. J. Am. Chem. Soc. 1995, 117, 8090-8099. Bonfantini, E. E.; Officer,
D. L. J. Chem. Soc., Chem. Commun. 1994, 1445-1446.
(18) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian,
D. F. J. Am. Chem. Soc. 1996, 118, 3996-3997.
(19) Lindsey, J. S.; Brown, P. A.; Siesel, D. A. Tetrahedron 1989, 45,
4845-4866.
(20) Gust, D.; Moore, T. A.; Moore, A. L.; Devadoss, C.; Liddell, P.
A.; Hermant, R.; Nieman, R. A.; Demanche, L. J.; DeGraziano, J. M.; Gouni,
I. J. Am. Chem. Soc. 1992, 114, 3590-3603. Moore, T. A.; Gust, D.; Moore,
A. L. Pure Appl. Chem. 1994, 66, 1033-1040.
(21) Maruyama, K.; Kawabata, S. Bull. Chem. Soc. Jpn. 1989, 62, 3498-
3507.
(22) Collin, J.-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. J.
Am. Chem. Soc. 1994, 116, 5679-5690.
(23) Osuka, A.; Marumo, S.; Maruyama, K.; Mataga, N.; Tanaka, Y.;
Taniguchi, S.; Okada, T.; Yamazaki, I.; Nishimura, Y. Bull. Chem. Soc.
Jpn. 1995, 68, 262-276. Osuka, A.; Marumo, S.; Mataga, N.; Taniguchi,
S.; Okada, T.; Yamazaki, Y.; Nishimura, Y.; Ohno, T.; Nozaki, K. J. Am.
Chem. Soc. 1996, 118, 155-168.
(24) Tran-Thi, T. H.; Desforge, C.; Thiec, C.; Gaspard, S. J. Phys. Chem.
1989, 93, 1226-1233.
(25) Sessler, J. S.; Brucker, E. A.; Kra´l, V.; Harriman, A. Supramolecular
Chemistry; Gordon and Breach Science Publishers SA: New York, 1994;
Vol. 4, pp 35-41.
(26) Osuka, A.; Marumo, S.; Wada, Y.; Yamazaki, I.; Yamazaki, T.;
Shirakawa, Y.; Nishimura, Y. Bull. Chem. Soc. Jpn. 1995, 68, 2909-2915.
(27) Xu, J.; Moore, J. S. Acta Polym. 1994, 45, 83-87.