ARTICLES
2 ns with a 2 fs time step at a constant volume. Production trajectories were then run
for an additional 500 ns under the same simulation conditions.
20. Polic, V. & Auclair, K. Controlling substrate specificity and product regio- and
stereo-selectivities of P450 enzymes without mutagenesis. Bioorg. Med. Chem.
22, 5547–5554 (2014).
PikCxx-RhFRED analytical-scale enzymatic reactions. The standard assay
contained 5 μM PikCxx-RhFRED, 1 mM substrate, 1 mM NADP+, 0.05 units of
glucose-6-phosphate dehydrogenase and 5 mM glucose-6-phosphate for NADPH
regeneration in reaction buffer (50 mM NaH2PO4, pH 7.3, 1 mM EDTA, 0.2 mM
dithiothreitol and 10% glycerol) with a total volume of 50 μl. The reaction was
carried out at 30 °C for 3 h and quenched by the addition of 150 μl MeOH. The
resulting mixture was briefly vortexed and centrifuged at 10,000g for 10 min. The
subsequent liquid chromatography mass spectrometry (LC-MS) analysis was
performed on an Agilent Q-TOF HPLC-MS (Department of Chemistry, University
of Michigan) equipped with a high-resolution electrospray mass spectrometry (ESI-
MS) source and a reverse-phase HPLC system using a Waters XBridge C18 column
3.5 μm, 2.1 × 150 mm, under the following conditions: mobile phase (A = deionized
water + 0.1% formic acid, B = acetonitrile + 0.1% formic acid), 10–100% B over 15 min,
100% B for 4 min; flow rate, 0.2 ml min–1. Reactions were scanned for [M + 16]
(monohydoxylation) and [M + 32] (dihydroxylation). The percent conversion was
determined as outlined by Li and co-authors35. Briefly, the percent conversion was
calculated using AUCtotal products/(AUCtotal products + AUCunreacted substrate) by
assuming that the ionization efficiencies of the substrate and hydroxylated products
were the same, because the ionization site of this series of compounds is presumed to
be the dimethylamino group.
21. Vermeulen, N. A., Chen, M. S. & White, M. C. The Fe(PDP)-catalyzed aliphatic
C–H oxidation: a slow addition protocol. Tetrahedron 65, 3078–3084 (2009).
22. Olivo, G., Lanzalunga, O., Mandolini, L. & Di Stefano, S. Substituent effects on
the catalytic activity of bipyrrolidine-based iron complexes. J. Org. Chem. 78,
11508–11512 (2013).
23. Yazerski, V. A. et al. Making Fe(BPBP)-catalyzed C–H and C=C oxidations more
affordable. Org. Biomol. Chem. 12, 2062–2070 (2014).
24. Lee, S. & Fuchs, P. L. An efficient C–H oxidation protocol for alpha-
hydroxylation of cyclic steroidal ethers. Org. Lett. 6, 1437–1440 (2004).
25. Ottenbacher, R. V., Samsonenko, D. G., Talsi, E. P. & Bryliakov, K. P. Highly
efficient, regioselective, and stereospecific oxidation of aliphatic C–H groups
with H2O2, catalyzed by aminopyridine manganese complexes. Org. Lett. 14,
4310–4313 (2012).
26. Chow, Y. L., Hayasaka, T. & Tam, J. N. S. Photoreaction of nitroso compounds in
solution. 13. Photo-oxidation of alkyl nitrites. Can. J. Chem. 48, 508–511 (1970).
27. Petrovic, G., Saicic, R. N. & Cekovic, Z. Regioselective free radical
phenylsulfenation of a non-activated delta-carbon atom by the photolysis of
alkyl benzenesulfenate. Tetrahedron 59, 187–196 (2003).
28. Miyazawa, M., Kumagae, S. & Kameoka, H. Biotransformation of (+)- and
(–)-menthol by the larvae of common cutworm (Spodoptera litura). J. Agric.
Food Chem. 47, 3938–3940 (1999).
Received 13 October 2014; accepted 13 May 2015;
published online 29 June 2015
29. Atta ur, R. et al. Fungal transformation of (1R,2S,5R)-(–)-menthol by
Cephalosporium aphidicola. J. Nat. Prod. 61, 1340–1342 (1998).
30. Xue, Y. Q., Zhao, L. S., Liu, H. W. & Sherman, D. H. A gene cluster for macrolide
antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic
diversity. Proc. Natl Acad. Sci. USA 95, 12111–12116 (1998).
31. Xue, Y. Q., Wilson, D., Zhao, L. S., Liu, H. W. & Sherman, D. H. Hydroxylation
of macrolactones YC-17 and narbomycin is mediated by the PikC-encoded
cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5, 661–667 (1998).
32. Zhang, Q. B. & Sherman, D. H. Isolation and structure determination of
novamethymycin, a new bioactive metabolite of the methymycin biosynthetic
pathway in Streptomyces venezuelae. J. Nat. Prod. 64, 1447–1450 (2001).
33. Sherman, D. H. et al. The structural basis for substrate anchoring, active site
selectivity, and product formation by P450 PikC from Streptomyces venezuelae.
J. Biol. Chem. 281, 26289–26297 (2006).
34. Li, S. Y., Ouellet, H., Sherman, D. H. & Podust, L. M. Analysis of transient and
catalytic desosamine-binding pockets in cytochrome P-450 PikC from
Streptomyces venezuelae. J. Biol. Chem. 284, 5723–5730 (2009).
35. Li, S. Y. et al. Selective oxidation of carbolide C–H bonds by an engineered
macrolide P450 mono-oxygenase. Proc. Natl Acad. Sci. USA 106,
18463–18468 (2009).
References
1. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond
oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).
2. Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations
with a predictive model for site-selectivity. J. Am. Chem. Soc. 135,
14052–14055 (2013).
3. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed
methylene oxidation. Science 327, 566–571 (2010).
4. Chen, K., Eschenmoser, A. & Baran, P. S. Strain release in C–H bond activation.
Angew. Chem. Int. Ed. 48, 9705–9708 (2009).
5. Roiban, G. D., Agudo, R. & Reetz, M. T. Cytochrome P450 catalyzed oxidative
hydroxylation of achiral organic compounds with simultaneous creation of two
chirality centers in a single C–H activation step. Angew. Chem. Int. Ed. 53,
8659–8663 (2014).
6. Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of
P450-catalysed hydroxylation of steroids controlled by laboratory evolution.
Nature Chem. 3, 738–743 (2011).
36. Negretti, S. et al. Directing group-controlled regioselectivity in an enzymatic
C–H bond oxygenation. J. Am. Chem. Soc. 136, 4901–4904 (2014).
37. Jiménez-Osés, G. et al. The role of distant mutations and allosteric regulation on
LovD active site dynamics. Nature Chem. Biol. 10, 431–436 (2014).
38. Li, S. Y., Podust, L. M. & Sherman, D. H. Engineering and analysis of a self-
sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase
domain. J. Am. Chem. Soc. 129, 12940–12941 (2007).
39. Wong, C-H. & Whitesides, G. M. Enzyme-catalyzed organic synthesis: NAD(P)
H cofactor regeneration by using glucose-6-phosphate and glucose-6-phosphate
dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103,
4890–4899 (1981).
7. Zhang, K. D., Shafer, B. M., Demars, M. D., Stern, H. A. & Fasan, R.
Controlled oxidation of remote sp3 C–H bonds in artemisinin via P450
catalysts with fine-tuned regio- and stereoselectivity. J. Am. Chem. Soc. 134,
18695–18704 (2012).
8. Zhang, K. D., El Damaty, S. & Fasan, R. P450 fingerprinting method for rapid
discovery of terpene hydroxylating P450 catalysts with diversified
regioselectivity. J. Am. Chem. Soc. 133, 3242–3245 (2011).
9. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–
hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).
10. Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2,
647–666 (2012).
40. Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).
11. Agudo, R., Roiban, G. D. & Reetz, M. T. Achieving regio- and
enantioselectivity of P450-catalyzed oxidative C–H activation of small
functionalized molecules by structure-guided directed evolution. ChemBioChem
13, 1465–1473 (2012).
41. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-
energy formula into a functional of the electron density. Phys. Rev. B 37,
785–789 (1988).
42. Shaik, S. et al. P450 enzymes. Their structure, reactivity, and selectivity—
modeled by QM/MM calculations. Chem. Rev. 110, 949–1017 (2009).
43. Rydberg, P., Sigfridsson, E. & Ryde, U. On the role of the axial ligand in heme
proteins: a theoretical study. J. Biol. Inorg. Chem. 9, 203–223 (2004).
44. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular
calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys.
82, 270–283 (1985).
45. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in
dispersion corrected density functional theory. J. Comput. Chem. 32,
1456–1465 (2011).
46. Zhao, Y. & Truhlar, D. The M06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited
states, and transition elements: two new functionals and systematic testing of
four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120,
215–241 (2008).
47. Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted ab initio
pseudopotentials for the first row transition elements. J. Chem. Phys. 86,
866–872 (1987).
12. Acevedo-Rocha, C. G., Hoebenreich, S. & Reetz, M. T. in Methods in Molecular
Biology 2nd edn, Vol. 1179 (eds Gillam, E. M. J., Copp, J. N. & Ackerley, D. F.)
103–128 (Humana Press, 2014).
13. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type
enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).
14. Yang, J., Gabriele, B., Belvedere, S., Huang, Y. & Breslow, R. Catalytic oxidations
of steroid substrates by artificial cytochrome P-450 enzymes. J. Org. Chem. 67,
5057–5067 (2002).
15. Breslow, R. et al. Remote oxidation of steroids by photolysis of attached
benzophenone groups. J. Am. Chem. Soc. 95, 3251–3262 (1973).
16. Leow, D., Li, G., Mei, T. S. & Yu, J. Q. Activation of remote meta-C–H bonds
assisted by an end-on template. Nature 486, 518–522 (2012).
17. Tang, R. Y., Li, G. & Yu, J. Q. Conformation-induced remote meta-C–H
activation of amines. Nature 507, 215–220 (2014).
18. Larsen, A. T., May, E. M. & Auclair, K. Predictable stereoselective and
chemoselective hydroxylations and epoxidations with P450 3A4. J. Am. Chem.
Soc. 133, 7853–7858 (2011).
19. Menard, A., Fabra, C., Huang, Y. & Auclair, K. Type II ligands as chemical
auxiliaries to favor enzymatic transformations by P450 2E1. ChemBioChem 13,
2527–2536 (2012).
48. Gonzalez, C. & Schlegel, H. B. Reaction path following in mass-weighted internal
coordinates. J. Phys. Chem. 94, 5523–5527 (1990).
7
© 2015 Macmillan Publishers Limited. All rights reserved