Synthesis and Activity of Benzimidazole Derivatives
J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 26 5235
(10) (a) Wexler, R. R.; Greenlee, W. J .; Irvin, J . D.; Goldberg, M. R.;
Prendergast, K.; Smith, R. D.; Timmermans, P. B. M. W. M.
Nonpeptide Angiotensin II Receptor Antagonists: The Next
Generation in Antihypertensive Therapy. J . Med. Chem. 1996,
39, 625-656 and references cited therein. (b) Walsh, T. F.; Fitch,
K. J .; MacCoss, M.; Chang, R. S. L.; Kivlighn, S. D.; Lotti, V. J .;
Siegl, P. K. S.; Patchett, A. A.; Greenlee, W. J . Synthesis of New
Imidazo[1,2-b]pyridine Isosteres of Potent Imidazo[4,5-b]py-
ridazine Angiotensin II Antagonists. Bioorg. Med. Chem. Lett.
1994, 4, 219-222. (c) Quan, M. L.; DeLucca, I.; Boswell, G. A.;
Chiu, A. T.; Wong, P. C.; Wexler, R. R.; Timmermans, P. B. M.
W. M. Imidazolinones As Nonpeptide Angiotensin II Receptor
Antagonists. Bioorg. Med. Chem. Lett. 1994, 4, 1527-1530. (d)
Chang, L. L.; Ashton, W. T.; Flanagan, K. L.; Rivero, R. A.; Chen,
T.-B.; O’Malley, S. S.; Zingaro, G. J .; Kivlighn, S. D.; Siegl, P.
K. S.; Lotti, V. J .; Chang, R. S. L.; Greenlee, W. J . Potent
Triazolinone-based Angiotensin II Receptor Antagonists with
Equivalent Affinity for Both AT1 and AT2 Subtypes. Bioorg. Med.
Chem. Lett. 1994, 4, 2787-2792. (e) Deprez, P.; Heckmann, B.;
Corbier, A.; Vevert, J .-P.; Fortin, M.; Guillaume, J . Balanced AT1
and AT2 Angiotensin II Antagonists I. New Orally Active
5-Carboxyl Imidazolyl Biphenyl Sulfonylureas. Bioorg. Med.
Chem. Lett. 1995, 5, 2605-2610. (f) Deprez, P.; Guillaume, J .;
Corbier, A.; Fortin, M.; Vevert, J .-P.; Heckmann, B. Balanced
AT1 and AT2 Angiotensin II Antagonists II. Potent 5-R-Hydroxy-
acid Imidazolyl Biphenyl Sulfonylureas. Bioorg. Med. Chem. Lett.
1995, 5, 2611-2616. (g) Deprez, P.; Guillaume, J .; Corbier, A.;
Vevert, J .-P.; Fortin, M.; Heckmann, B. Potent 5-â-Keto Sulfox-
ide Imidazolyl Biphenyl Sulfonylureas. Bioorg. Med. Chem. Lett.
1995, 5, 2617-2622. (h) Chang, L. L.; Ashton, W. T.; Flanagan,
K. L.; Chen, T.-B.; O’Malley, S. S.; Zingaro, G. J .; Siegl, P. K. S.;
Kivlighn, S. D.; Lotti, V. J .; Chang, R. S. L.; Greenlee, W. J .
Triazolinone Biphenylsulfonamides as Angiotensin II Receptor
Antagonists with High Affinity for Both the AT1 and AT2
Subtypes. J . Med. Chem. 1994, 37, 4464-4478. (i) Deprez, P.;
Guillaume, J .; Becker, R.; Corbier, A.; Didierlaurent, S.; Fortin,
M.; Frechet, D.; Hamom, G.; Heckmann, B.; Heitsch, H.; Klee-
mann, H.-W.; Vevert, J .-P.; Vincent, J .-C.; Wagner, A.; Zhang,
J . Sulfonylureas and Sulfonylcarbamates as New Non-Tetrazole
Angiotensin II Receptor Antagonists. Discovery of a Highly
Potent Orally Active (Imidazolylbiphenyl)sulfonylureas (HR
720). J . Med. Chem. 1995, 38, 2357-2377.
1-[[2′-(2,5-Dih yd r o-5-oxo-4H -1,2,4-t h ia d ia zol-3-yl)b i-
p h en yl-4-yl]m et h yl]-2-et h oxy-1H -b en zim id a zole-7-ca r -
boxylic Acid (8f). A mixture of 10f (2.40 g, 4.93 mmol) and
LiOH‚H2O (0.52 g, 12.4 mmol) in THF (25 mL)-H2O (15 mL)
was stirred at room temperature for 19 h. The reaction
mixture was diluted with water and acidified with 1 N HCl.
The precipitate was collected by filtration and recrystallized
from CHCl3-MeOH to give 8f (2.04 g, 87%) as colorless
1
needles: mp 213-214 °C; H NMR (DMSO-d6) δ 1.39 (3H, t,
J ) 7.0), 4.58 (2H, q, J ) 7.0), 5.66 (2H, s), 7.02 (2H, d,
J ) 8.2), 7.14-7.22 (3H, m), 7.43-7.69 (6H, m); IR (KBr)
1700, 1660, 1550, 1280, 1240, 1040, 765, 750 cm-1
(C25H20N4O3S) C, H, N.
. Anal.
The compounds 8a -e,g-l and 11a -d ,f-h were prepared
by a procedure similar to that described above, and the results
are shown in Table 5.
Ack n ow led gm en t. We wish to thank Dr. K. Nish-
ikawa for his encouragement and helpful discussion
throughout this work and Ms. M. Ojima for her techni-
cal assistance.
Refer en ces
(1) Naka, T.; Inada, Y. Heterocyclic Compounds, Their Production
and Use. Eur. Pat. 520423, 1993; Chem Abstr. 1993, 119, 49388x.
(2) Ferrario, C. M. The Renin-Angiotensin System: Importance in
Physiology and Pathology. J . Cardiovasc. Pharmacol. 1990, 15
(Suppl. 3), S1-S5.
(3) (a) Coulter, M. D.; Edwards, I. R. Cough Associated with
Captopril and Enalapril. Br. Med. J . 1987, 294, 1521-1523. (b)
Erdo¨s, E. G.; Skidgel, R. A. The Unusual Substrate Specificity
and the Distribution of Human Angiotensin
I Converting
Enzyme. Hypertension 1986, 8 (Suppl. I), I-34-I-37.
(4) Kubo, K.; Kohara, Y.; Imamiya, E.; Sugiura, Y.; Inada, Y.;
Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide Angiotensin
II Receptor Antagonists. Synthesis and Biological Activity of
Benzimidazolecarboxylic Acids. J . Med. Chem. 1993, 36, 2182-
2195.
(11) For heterocycles as the tetrazole bioisostere, see: (a) Soll, R. M.;
Kinney, W. A.; Primeau, J .; Garrick, L.; McCaully, R. J .;
Colatsky, T.; Oshiro, G.; Park, C. H.; Hartupee, D.; White, V.;
McCallum, J .; Russo, A.; Dinish, J .; Wojdan, A. 3-Hydroxy-3-
Cyclobutene-1,2-Dione: Application of a Novel Carboxylic Acid
Bioisostere to an In-vivo Active Non-tetrazole Angiotensin II
Antagonist. Bioorg. Med. Chem. Lett. 1993, 3, 757-760. (b) Kim,
D.; Mantlo, N. B.; Chang, R. S. L.; Kivlighn, S. D.; Greenlee, W.
J . Evaluation of Heterocyclic Acid Equivalents as Tetrazole
Replacements in Imidazopyridine-Based Nonpeptide Angio-
tensin II Receptor Antagonists. Bioorg. Med. Chem. Lett. 1994,
4, 41-44. (c) Ferrari, B.; Taillades, J .; Perreaut, P.; Bernhart,
C.; Gougat, J .; Guiraudou, P.; Cazaubon, C.; Roccon, A.; Nisato,
D.; Le Fur, G.; Brelie`re, J . C. Development of Tetrazole Bioi-
sosteres in Angiotensin II Antagonists. Bioorg. Med. Chem. Lett.
1994, 4, 45-50.
(12) Lipinski, C. A. Bioisosterism in Drug Design. Annu. Rep. Med.
Chem. 1986, 21, 283-291.
(13) Kohara, Y.; Imamiya, E.; Kubo, K.; Wada, T.; Inada, Y.; Naka,
T. A New Class of Angiotensin II Receptor Antagonists with a
Novel Acidic Bioisostere. Bioorg. Med. Chem. Lett. 1995, 5,
1903-1908.
(14) The detailed study on the synthesis and assignment of the 5-oxo-
1,2,4-thiadiazole and 5-thioxo-1,2,4-oxadiazole derivatives will
be reported elsewhere.
(15) Birr, E. J . Ger. 950537, 1956; Chem. Abstr. 1956, 53, 17737e.
(16) Alessi, T. R.; Dolak, T. M.; Ellingboe, J . W. Novel Naphthale-
nylalkyl-3H-1,2,3,5-oxathiadiazole-2-oxides Useful as Antihy-
perglycemic Agents. U.S. Pat. 4,897,405, 1990.
(5) Kubo, K.; Kohara, Y.; Yoshimura, Y.; Inada, Y.; Shibouta, Y.;
Furukawa, Y.; Kato, T.; Nishikawa, K.; Naka, T. Nonpeptide
Angiotensin II Receptor Antagonists. Synthesis and Biological
Activity of Potential Prodrugs of Benzimidazole-7-carboxylic
Acids. J . Med. Chem. 1993, 36, 2343-2349.
(6) Cho, N.; Kubo, K.; Furuya, S.; Sugiura, Y.; Yasuma, T.; Kohara,
Y.; Ojima, M.; Inada,Y.; Nishikawa, K.; Naka, T. A New Class
of Diacidic Nonpeptide Angiotensin II Receptor Antagonists.
Bioorg. Med. Chem. Lett. 1994, 4, 35-40.
(7) Kubo, K.; Inada, Y.; Kohara, Y.; Sugiura, Y.; Ojima, M.; Itoh,
K.; Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide Angio-
tensin II Receptor Antagonists. Synthesis and Biological Activity
of Benzimidazoles. J . Med. Chem. 1993, 36, 1772-1784.
(8) (a) Stearns, R. A.; Doss, G. A.; Miller, R. R.; Chiu, S.-H. L.
Synthesis and Identification of a Novel Tetrazole Metabolite of
the Angiotensin II Receptor Antagonist DuP 753. Drug Metab.
Dispos. 1991, 19, 1160-1162. (b) Stearns, R. A.; Miller, R. R.;
Doss, G. A.; Chakravarty, P. K.; Rosegay, A.; Gatto, G. J .; Chiu,
S.-H. L. The Metabolism of DuP 753, a Nonpeptide Angiotensin
II Receptor Antagonist, by Rat, Monkey, and Human Liver
Slices. Drug Metab. Dispos. 1992, 20, 281-287. (c) Huskey, S.-
E. W.; Miller, R. R.; Chiu, S.-H. L. N-Glucuronidation Reaction.
I. Tetrazole N-Glucuronidation of Selected Angiotensin II Recep-
tor Antagonists in Hepatic Microsomes from Rats, Dogs, Mon-
keys and Humans. Drug Metab. Dispos. 1993, 21, 792-799.
(9) For the prodrug approach of diacidic AII receptor antagonists,
see: (a) Middlemiss, D.; Watson, S. P.; Ross, B. C.; Dowle, M.
D.; Scopes, D. I. C.; Montana, J . G.; Shah, P.; Hirst, G. C.;
Panchal, T. A.; Paton, J . M. S.; Pass, M.; Hubbard, T.; Hamblett,
J .; Cardwell, K. S.; J ack, T. I.; Stuart, G.; Coote, S.; Bradshow,
J .; Drew, G. M.; Hilditch, A.; Clark, K. L.; Robertson, M. J .;
Bayliss, M. K.; Donnelly, M.; Palmer, E.; Manchee, G. R. M.
Benzofuran Based Angiotensin II Antagonists Related To
GR117289: Enhancement of Potency in Vitro and Oral Activity.
Bioorg. Med. Chem. Lett. 1993, 3, 589-594. (b) Carini, D. J .;
Ardecky, R. J .; Ensinger, C. L.; Pruitt, J . R.; Wexler, R. R.; Wong,
P. C.; Huang, S.-M.; Aungst, B. J .; Timmermans, B. M. W. M.
Nonpeptide Angiotensin II Receptor Antagonists: The Discovery
of DMP 581 and DMP 811. Bioorg. Med. Chem. Lett. 1994, 4,
63-68. (c) Ryono, D. E.; Lloyd, J .; Poss, M. A.; Bird, J . E.; Buote,
J .; Chong, S.; Dickinson, K. E. J .; Gu, Z.; Mathers, P.; Moreland,
S.; Morrison, R. A.; Petrillo, E. W.; Powell, J . R.; Schaeffer, T.;
Spitzmiller, E. R.; White, R. E. Orally Active Prodrugs of
Quinoline-4-carboxylic Acid Angiotensin II Receptor Antagonists.
Bioorg. Med. Chem. Lett. 1994, 4, 201-206.
(17) Losartan exhibits 10-fold less binding affinity in bovine adrenal
cortical microsomes than in adrenal cortical microsomes from
rat, guinea pig, or rabbit aorta (IC50 ) (0.18-0.5) × 10-7 M).
Murray et al. demonstrated that the IC50 of losartan in bovine
adrenal cortex membranes was 4.2 × 10-7 M, which is compa-
rable to our data (IC50 ) 1.5 × 10-7 M) (Bioorg. Med. Chem.
Lett. 1992, 2, 1775-1779).
(18) Thornber, C. W. Isosterism and Molecular Modification in Drug
Design. Chem. Rev. 1979, 8, 563-580.
(19) The pKa values were measured in DMSO-H2O (2:3) at 26 °C by
potentiometric titration with standardized 0.1 N NaOH.
J M960547H