2858
N. Nieto et al.
LETTER
[a]D25 +28.53 (c 0.12, CH2Cl2). IR: 2871–3066, 1599, 1491,
1097, 1037, 855 cm–1. 1H NMR (400 MHz, CDCl3): d =
7.12–7.36 (m, 15 H), 5.36 (s, 1 H), 3.69 (d, 1 H, J = 1.9 Hz),
3.65 (t, 2 H, J = 6.0 Hz), 3.13 (td, J = 5.6, 1.9 Hz), 2.02 (td,
2 H, J = 5.6, 6.0 Hz). 13C NMR: d = 142.3, 142.3, 137.8,
128.6, 128.5, 128.2, 127.6, 127.6, 127.3, 127.1, 127.0,
125.7, 84.0, 65.7, 61.1, 58.8, 33.1. HRMS: m/z calcd for
C23H22O2Na: 353.1517; found: 353.1520. Enantiomeric
excess was determined by HPLC using a chiral stationary
phase (Chiracel OD-H column), eluent: hexane–i-PrOH
(95:5); flow: 0.8 mL/min; l = 216 nm; tR (major) = 10.8 min;
tR (minor) = 11.7 min.
Acknowledgment
We sincerely thank DGI-MCYT (Grant CTQ2005-02193/BQU),
DURSI (Grant 2005SGR225), Consolider Ingenio 2010
(CSD2006-0003), the ICIQ and the ‘Ramón Areces’ Foundations,
and the ‘Programa Torres Quevedo’ for financial support.
References and Notes
(1) (a) Katsuki, T. In Comprehensive Asymmetric Catalysis,
Vol. 2; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.;
Springer: Heidelberg, 1999, 621–648. (b) Jacobsen, E. N.;
Wu, M. H. In Comprehensive Asymmetric Catalysis, Vol. 2;
Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer:
Heidelberg, 1999, 649–677. (c) Johnson, R. A.; Sharpless,
K. B. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I.,
Ed.; Wiley-VCH: New York, 2000, 231–285. (d) Katsuki,
T. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I.,
Ed.; Wiley-VCH: New York, 2000, 287–325.
(12) General Procedure for the Epoxidation of Alkenes: The
corresponding alkene (2.22 mmol) and the required amount
of catalyst 3 (10–30 mol%) were dissolved in MeCN–
dimethoxymethane (44 mL, 1:2). A pH 6 buffer solution (8
mL), tetrabutylammonium hydrogen sulfate (35 mg, 0.10
mmol) was slowly added with stirring and the mixture was
cooled to the desired temperature. The flask was equipped
with two syringe pumps; one of them was filled with a
solution of Oxone (3.62–6.82 mmol) in pH 6 buffer (14 mL)
and the other one with a solution of K2CO3 (5.33–16.06
mmol) in H2O (14 mL). The two solutions were added
dropwise over a 2 h period (syringe pump). The solution was
stirred at 0 °C for the corresponding reaction time. The
mixture was diluted with H2O (40 mL) and extracted with
the appropriate organic solvent [5a and 5h: hexane (4 × 40
mL); 5b–g,i–l: CH2Cl2 (4 × 40 mL)]. The combined organic
fractions were collected and washed with brine (50 mL),
dried over Na2SO4, filtered and the solvents were removed
under reduced pressure. The crude material was purified by
flash chromatography on SiO2·Et3N (2.5%). Enantioselec-
tivity was determined by chiral chromatography and the
configuration of epoxides was established by comparison
with either reported elution order or optical rotation if
reported data was available. For 5a, HPLC; Chiralpak AD.14
For 5b,15 5j,16 and 5k,17 GC: gamma dex. For 5c18 and 5h,19
HPLC; Chiralcel OD. For 5d, HPLC; Chiralcel OD-H.20 For
5f,21 HPLC: Chiralcel AD-H. For 5l GC: gamma dex.
(13) Higher pH values were not considered since the background
reaction could be significant. See: Kurihara, M.; Ito, S.;
Tsutsumi, N.; Miyata, N. Tetrahedron Lett. 1994, 35, 1577.
(14) Roberts, S. M.; Poignant, G. Catalysis for Fine Chemical
Synthesis: Hydrolysis, Oxidation and Reduction, 1st ed.;
John Wiley & Sons: Chichester, 2002, 94–98.
(2) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K.,
Ed.; Wiley-VCH: Weinheim, 2006.
(3) See, for example: (a) Pericàs, M. A.; Puigjaner, C.; Riera,
A.; Vidal-Ferran, A.; Gómez, M.; Jimenez, F.; Muller, G.;
Rocamora, M. Chem. Eur. J. 2002, 8, 4164. (b) Popa, D.;
Puigjaner, C.; Gómez, M.; Benet-Buchholz, J.; Vidal-
Ferran, A.; Pericàs, M. A. Adv. Synth. Catal. 2007, 349,
2265; and references cited therein.
(4) For leading references on this transformation, see:
(a) Frohn, M.; Shi, Y. Synthesis 2000, 1979. (b) Shi, Y.
Acc. Chem. Res. 2004, 37, 488. (c) Hickey, M.; Goeddel,
D.; Crane, Z.; Shi, Y. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5794. (d) Yang, D. Acc. Chem. Res. 2004, 37, 497.
(e) Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X.
Chem. Rev. 2005, 105, 1603.
(5) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am.
Chem. Soc. 1997, 119, 11224; and references cited therein.
(6) Wu, X. Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124,
8792.
(7) Nieto, N.; Molas, P.; Benet-Buchholz, J.; Vidal-Ferran, A.
J. Org. Chem. 2005, 70, 10143.
(8) Diacetate 2 is a very effective as epoxidation catalyst using
10 mol% of catalyst loading. Loading for Shi’s catalysts
usually ranges from 20 mol% to 30 mol%. See refs. 4a–c.
(9) Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127,
6679.
(10) Nieto, N.; Munslow, I. J.; Barr, J.; Benet-Buchholz, J.;
Vidal-Ferran, A. Org. Biomol. Chem. 2008, 6, 2276.
(11) Compound 4e (0.37 g, 46% yield) was obtained as a
colourless oil. 1H NMR (400 MHz, CDCl3): d = 7.27–7.40
(m, 15 H), 6.48 (dt, 1 H, J = 16.0, 1.3 Hz), 6.28 (dt, 1 H, J =
16.0, 6.9 Hz), 5.42 (s, 1 H), 3.62 (t, 2 H, J = 6.9 Hz), 2.60
(qd, 2 H, J = 6.9, 1.3 Hz). 13C NMR: d = 142.4, 137.7, 131.6,
128.5, 128.4, 127.4, 127.3, 127.2, 127.0, 126.0, 83.7, 68.7,
33.6.
(15) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am.
Chem. Soc. 1997, 119, 11224.
(16) Katsuki, T. J. Mol. Catal. A: Chem. 1996, 113, 87.
(17) Archelas, A.; Furstoss, R. J. Org. Chem. 1999, 64, 6112.
(18) Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 3099.
(19) Brandes, B. D.; Jacobsen, E. N. J. Org. Chem. 1994, 59,
4378.
(20) Wang, Z.-X.; Shi, Y. J. Org. Chem. 1997, 62, 8622.
(21) Kin Tse, M.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao,
H.; Döbler, C.; Spannenberg, A.; Mägerlein, W.; Hugl, H.;
Beller, M. Chem. Eur. J. 2006, 12, 1855.
The asymmetric epoxidation of alkene 4e to give (+)-5e was
carried out by the general procedure (see ref. 12).
Compound 5e (0.15 g, 52% yield); white solid; mp 56 °C;
Synlett 2008, No. 18, 2856–2858 © Thieme Stuttgart · New York