LETTER
Y.; Taton, D. Macromolecules 2010, 43, 8853. (g) For the
Regioselective Hydrosilylation of Carbonyl Derivatives
437
(17) The triazolium chloride salt (24.4 mg, 0.1equiv) was added
to a suspension of NaH (60% in mineral oil, 4 mg, 0.1 equiv)
in anhydrous DMF (1 mL) at r.t. After stirring for 30 min,
H2SiPh2 (111 mg, 0.6 equiv) and the substrate (1 mmol)
dissolved in anhydrous DMF (1 mL) were added to the
reaction mixture. When no more substrate was seen by TLC
analysis, TBAF (1.0 M in THF, 1 mL, 1 equiv) was added
to the solution. Stirring was continued for 30 min and
quenching was achieved with H2O (10 mL). The mixture
was extracted with EtOAc (3 × 10 mL) and the combined
organic layers were washed with brine (10 mL), dried with
anhydrous Na2SO4, filtered, and the solution was concen-
trated in vacuo. The crude product was purified by flash
chromatography.
activation of a Si–Sn bond, see: Blanc, R.; Commeiras, L.;
Parrain, J.-L. Adv. Synth. Catal. 2010, 352, 661. (h) For
carbene activation of the Si–H bond of silanes, see: Frey,
G. D.; Masuda, J. D.; Donnadieu, B.; Bertrand, G. Angew.
Chem. Int. Ed. 2010, 49, 9444. (i) For carbene activation of
the Si–O bond of siloxanes, see: Rodriguez, M.; Marrot, S.;
Kato, T.; Stérin, S.; Fleury, E.; Baceiredo, A. J. Organomet.
Chem. 2007, 692, 705.
(8) Hydrosilylation of ketone and imine with poly-NHC
particles was reported recently, see ref. 7d.
(9) (a) Tandura, S. N.; Voronkov, M. G.; Alekseev, N. V. Top.
Curr. Chem. 1986, 131, 99. (b) Chult, C.; Corriu, R. J. P.;
Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371.
(c) Tamao, K. Proc. Jpn. Acad., Ser. B 2008, 84, 123.
(d) Holmes, R. R. Chem. Rev. 1996, 96, 927. (e)Dilman, A.
D.; Loffe, S. L. Chem. Rev. 2003, 103, 733. (f) Rendler, S.;
Oestreich, M. Synthesis 2005, 1727.
(10) (a) Breeden, S. W.; Lawrence, N. J. Synlett 1994, 833.
(b) Barr, K. J.; Berk, S. C.; Buchwald, S. L. J. Org. Chem.
1994, 59, 4323. (c) LaRonde, F. J.; Brook, M. A.
Tetrahedron Lett. 1999, 40, 3507.
Analytical data for some typical examples: Compound 2c:
1H NMR (400 MHz, CDCl3): d = 7.61 (d, J = 8.0 Hz, 2 H),
7.47 (q, J = 8.0 Hz, 2 H), 4.93 (q, J = 6.0 Hz, 1 H), 2.31 (br
s, 3 H), 1.47 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz,
CDCl3): d = 151.2, 132.3, 126.1, 118.9, 111.0, 70.0, 25.4.
Compound 2d: 1H NMR (400 MHz, CDCl3): d = 7.97 (d,
J = 8.0 Hz, 2 H), 7.40 (q, J = 8.0 Hz, 2 H), 4.92 (q,
J = 6.4 Hz, 1 H), 3.88 (s, 3 H), 2.49 (br s, 1 H), 1.47 (d,
J = 6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): d = 167.1,
151.1, 129.8, 129.1, 125.3, 69.9, 52.1, 25.3. Compound 2h:
1H NMR (400 MHz, CDCl3): d = 7.42 (d, J = 5.6 Hz, 1 H),
7.29–7.22 (m, 3 H), 5.24 (t, J = 6.0 Hz, 1 H), 3.06 (m, 1 H),
(11) (a) Kuhn, N.; Kartz, T.; Bläser, D.; Boese, R. Chem. Ber.
1995, 128, 245. (b) For the preparation of base-free NHC
samples, see: Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2005, 127, 6284.
(12) For representative hydrosilylation of nitriles, see:
(a) Khalimon, A. Y.; Simionescu, R.; Kuzmina, L. G.;
Howard, J. A. K.; Nikonov, G. I. Angew. Chem. Int. Ed.
2008, 47, 7701. (b) Peterson, E.; Khalimon, A. Y.;
Simionescu, R.; Kuzmina, L. G.; Howard, J. A. K.; Nikonov,
G. I. J. Am. Chem. Soc. 2009, 131, 908. (c) Gutsulyak, D.
V.; Nikonov, G. I. Angew. Chem. Int. Ed. 2010, 49, 7553.
(d) Watanabe, T.; Hashimoto, H.; Tobita, H. J. Am. Chem.
Soc. 2007, 128, 2176. (e) Ochiai, M.; Hashimoto, H.;
Tobita, H. Angew. Chem. Int. Ed. 2007, 46, 8192.
(13) For representative hydrosilylation of esters, see: (a) Mao,
Z.; Gregg, B. T.; Cutler, A. R. J. Am. Chem. Soc. 1995, 117,
10139. (b) Ojima, I.; Kogure, T.; Kumagai, M. J. Org.
Chem. 1977, 42, 1671. (c) Igarashi, M.; Mizuno, R.;
Fuchikami, T. Tetrahedron Lett. 2001, 42, 2149. (d) Berc,
S. C.; Kreutzer, K. A.; Buchwald, S. L. J. Am. Chem. Soc.
1991, 113, 5093. (e) Berc, S. C.; Buchwald, S. L. J. Org.
Chem. 1992, 57, 3751.
2.82 (m, 1 H), 2.53–2.44 (m, 1 H), 1.99–1.90 (m, 2 H). 13
C
NMR (100 MHz, CDCl3): d = 145.0, 143.3, 128.3, 126.7,
124.9, 124.2, 76.4, 35.9, 29.8. Compound 2j (syn/anti,
2.5:1): 1H NMR (400 MHz, CDCl3): d = 7.50–7.27 (m, 20 H,
syn and anti), 5.00 (t, J = 2.0 Hz, 1 H, anti), 4.73 (t,
J = 4.2 Hz, 1 H, syn), 4.17 (d, J = 2.0 Hz, 1 H, anti), 4.04 (d,
J = 2.0 Hz, 1 H, syn), 3.34 (dd, J = 4.2, 2.0 Hz, 1 H, syn),
3.32 (dd, J = 2.8, 2.0 Hz, 1 H, anti), 3.01 (d, J = 4.2 Hz, 1 H,
syn), 2.85 (d, J = 2.4 Hz, 1 H, anti). 13C NMR (100 MHz,
CDCl3): d = 140.2 (syn), 139.4 (anti), 136.6 (anti), 136.4
(syn), 128.8 (syn), 128.7 (anti), 128.6 (syn and anti), 128.5
(syn), 128.4 (anti), 128.3 (syn and anti), 126.7 (anti), 126.3
(syn), 125.8 (syn and anti), 73.5 (syn), 71.3 (anti), 65.9 (syn),
65.1 (anti), 57.0(syn), 55.2 (anti). Compound 2l: 1H NMR
(400 MHz, CDCl3): d = 3.54 (m, 1 H), 1.84–1.67 (m, 5 H),
1.30–0.91 (m, 10 H). 13C NMR (100 MHz, CDCl3): d = 72.4,
45.1, 28.7, 28.4, 26.5, 26.2, 26.1, 20.4. Compound 4: 1H
NMR (400 MHz, CDCl3): d = 7.35–7.24 (m, 5 H), 4.90 (br
s, 1 H), 4.31 (d, J = 4.8 Hz, 2 H), 1.47 (s, 9 H). 13C NMR
(100 MHz, CDCl3): d = 155.9, 139.0, 128.6, 127.5, 127.3,
79.5, 44.7, 28.4. Compound 6: 1H NMR (400 MHz, CDCl3):
d = 6.04 (d, J = 16.0 Hz, 1 H), 5.48 (dd, J = 16.0, 6.8 Hz,
1 H), 4.35 (sext., J = 6.4 Hz, 1 H), 1.97 (t, J = 6.4 Hz, 2 H),
1.66 (s, 3 H), 1.62–1.51 (m, 3 H), 1.44 (m, 2 H), 1.32 (d,
J = 6.0 Hz, 3 H), 0.98 (s, 6 H). 13C NMR (100 MHz, CDCl3):
d = 137.6, 136.6, 128.8, 127.5, 69.5, 39.4, 33.9, 32.7, 28.7,
28.6, 23.6, 21.3, 19.2. Compound 12: 1H NMR (400 MHz,
CDCl3): d = 7.40–7.26 (m, 5 H), 4.1 (s, 1 H), 3.74 (d,
J = 11.6 Hz, 2 H), 3.19 (d, J = 11.6 Hz, 1 H), 2.92 (br s,
1 H), 0.73–0.62 (m, 3 H), 0.48–0.44 (m, 1 H). 13C NMR
(100 MHz, CDCl3): d = 142.1, 128.2, 127.5, 126.2, 79.7,
68.4, 27.5, 9.8, 8.0.
(14) Hanada, S.; Yuasa, A.; Kuroiwa, H.; Motoyama, Y.;
Nagashima, H. Eur. J. Org. Chem. 2010, 1021.
(15) For reviews of N-heterocyclic carbenes as organocatalysts,
see: (a) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004,
37, 53. (b) Marion, N.; Díez-González, S.; Nolan, S. P.
Angew. Chem. Int. Ed. 2007, 46, 2988. (c) Enders, D.;
Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
(d) Nair, V.; Vellalath, V.; Babu, B. P. Chem. Soc. Rev.
2008, 37, 2691. (e) DiRocco, D. A.; Rovis, T. J. Am. Chem.
Soc. 2011, 133, 10402.
(16) For an intramolecular hydrosilylation of b-silyloxy ketones,
see: O’Neil, G. W.; Miller, M. M.; Carter, K. P. Org. Lett.
2010, 12, 5350.
© Thieme Stuttgart · New York
Synlett 2012, 23, 433–437