achieved even with advantageous emission features such as
broad and largely Stokes shifted bands and considerably high
fluorescence quantum yields in the red/NIR spectral region.
We gratefully acknowledge the financial support by the
Deutsche Forschungsgemeinschaft and the Bundesministerium
für Bildung und Forschung.
Notes and references
1 (a) T. D. James, P. Linnane and S. Shinkai, Chem. Commun., 1996, 281;
(b) P. D. Beer, Chem. Commun., 1996, 689; (c) A. P. de Silva, H. Q. N.
Gunaratne, C. McVeigh, G. E. M. Maguire, P. R. S. Maxwell and E.
O’Hanlon, Chem. Commun., 1996, 2191; (d) M.-P. Teulade-Fichou,
J. P. Vigneron and J.-M. Lehn, J. Chem. Soc., Perkin Trans. 2, 1996,
2169; (e) D. Parker, K. Senanayake and J. A. G. Williams, Chem.
Commun., 1997, 1777; (f) M. A. Mortellaro and D. G. Nocera, J. Am.
Chem. Soc., 1996, 118, 7414; (g) S. Weidner and Z. Pikramenou, Chem.
Commun., 1998, 1473; (h) A. P. de Silva and T. E. Rice, Chem.
Commun., 1999, 163; (i) J. J. La Clair, Angew. Chem., Int. Ed., 1999, 38,
3045; (j) G. McSkimming, J. H. R. Tucker, H. Bouas-Laurent and J.-P.
Desvergne, Angew. Chem., Int. Ed., 2000, 39, 2167; (k) A. P. de Silva,
H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy,
J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515.
2 For examples on anions: D. H. Vance and A. W. Czarnik, J. Am. Chem.
Soc., 1994, 116, 9397; H. Miyaji, P. Anzenbacher, Jr., J. L. Sessler, E. R.
Bleasdale and P. A. Gale, Chem. Commun., 1999, 1723; for examples on
heavy and transition metal cations: P. Ghosh, P. K. Bharadwaj, S.
Mandal and S. Ghosh, J. Am. Chem. Soc., 1996, 118, 1553; B.
Ramachandram and A. Samanta, Chem. Phys. Lett., 1998, 290, 9; for
examples on alkali and alkaline-earth cations: A. P. de Silva, H. Q. N.
Gunaratne and G. E. M. Maguire, J. Chem. Soc., Chem. Commun., 1994,
1213; K. Yoshida, T. Mori, S. Watanabe, H. Kawai and T. Nagamura,
J. Chem. Soc., Perkin Trans. 2, 1999, 393; for reviews: see
refs. 1b, k.
3 R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E.
M. Maguire, C. P. McCoy and K. R. A. S. Sandanayake, Top. Curr.
Chem., 1993, 168, 223.
4 (a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson and M.
Nieuwenhuizen, Chem. Commun., 1996, 1967; (b) K. Rurack, J. L.
Bricks, B. Schulz, M. Maus, G. Reck and U. Resch-Genger, J. Phys.
Chem. A, 2000, 104, 6171.
5 A. P. de Silva and S. A. de Silva, J. Chem. Soc., Chem. Commun., 1986,
1709; E. U. Akkaya, M. E. Huston and A. W. Czarnik, J. Am. Chem.
Soc., 1990, 112, 3590; S. Draxler and M. E. Lippitsch, Appl. Opt., 1996,
35, 4117; H.-F. Ji, R. Dabestani, G. M. Brown and R. L. Hettich,
Photochem. Photobiol., 1999, 69, 513.
6 M. A. Kahlow, T. J. Kang and P. F. Barbara, J. Phys. Chem., 1987, 91,
6452; P. J. Rossky and J. D. Simon, Nature, 1994, 370, 263.
7 S. Fery-Forgues, M.-T. Le Bris, J.-P. Guetté and B. Valeur, J. Phys.
Chem., 1988, 92, 6233; J. Bourson, J. Pouget and B. Valeur, J. Phys.
Chem., 1993, 97, 4552.
Fig. 1 Fluorescence titration spectra (lexc = 478 nm) of 1 (5 3 1026 M)
with Hg(ClO4)2 (concentration range: 5 3 1027 to 2 3 1023 M) in
acetonitrile. Upper inset: selected absorption titration spectra (isosbestic
point: 478 nm; arrow indicates the direction of change upon HgII addition).
Lower inset: fit (–––) of the integrated intensity (0) of the fluoroescence
titration.
the measured fluorescence lifetime according to kET = tf(X)21
2 tf(3)21 with X = 1, 2, 4 by using that of 3 as a reference
(Table 1). This yields kET of 12, 34 and 58 ns21 for 1, 2 and 4,
respectively. These rate constants are rather small and are thus
not related to the solvent relaxation time (the longitudinal
solvent relaxation time in acetonitrile was determined to
0.2 ps)6 suggesting a nonadiabatic electron transfer process.
Upon cation addition to 1 and 2, the changes in spectral band
position are comparatively small (Table 1 and, as an example,
the titration of 1 with Hg(ClO4)2 shown in Fig. 1) as is expected
for an ET signaling mechanism. Accordingly, binding of a
cation to the electron donating 5-p-receptor strongly alters its
redox potential and weakens its donor strength thus decelerting
the ET quenching process. As is evident from Table 1, the
cation-induced changes in fluorescence quantum yield and
lifetime are drastic and are directly related to the charge density
of the metal ion, i.e. the inhibition of the ET reaction being
stronger for HgII than for AgI (for 1) and for alkaline-earth metal
ions relative to alkali metal ions (for 2). For the complexes with
divalent HgII, CaII and PbII, all of them tightly binding to the
fluorescent sensor molecules, even a complete ‘switching off’
of the ET process is manifested by rate constants of radiative
and non-radiative deactivation which are nearly identical to
those of the reference compound 3, lacking a 5-p-anilino donor.
In all the cases, the fit of the spectrofluorometric titration
data4b,7 yielded a 1+1 complex stoichiometry.
Besides the favorable fluorescence enhancement character-
istics, the cation selectivity can easily be directed by tuning of
the 5-p-receptor. Whereas 1, containing four ‘soft’8 sulfur donor
atoms in the 15-crown-5 receptor, only binds to the thiophilic
heavy and transition metal ions HgII and AgI (for a detailed
discussion of ion selectivities and preferences, see refs 4(b) and
9), 2 with a monoaza-tetraoxa-15-crown-5 unit shows changes
in its spectroscopic properties in the presence of the ‘hard’8
group I and II metal ions as well as PbII. The power of the
present design concept, especially for HgII (1) and PbII (2)
commonly known as fluorescence quenchers10 and for sensing
applications in the red/NIR, is apparent.11
8 R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.
9 K. Rurack, J. L. Bricks, G. Reck, R. Radeglia and U. Resch-Genger,
J. Phys. Chem. A, 2000, 104, 3087.
10 A. W. Varnes, R. B. Dodson and E. L. Wehry, J. Am. Chem. Soc., 1972,
94, 946; H. Masuhara, H. Shioyama, T. Saito, K. Hamada, S. Yasoshima
and N. Mataga, J. Phys. Chem., 1984, 88, 5868.
11 It is interesting that the corresponding substituted chalcone-type dyes
(PhNI–CO–CHNCH–C6H4R with R = H, NMe2 or crowns), which
2
were obtained as intermediates within the D -pyrazoline synthesis (see
ESI†), do not fluoresce (ff < 1 3 1025) and thus cannot be exploited
for sensing purposes as, for instance their benzothiazole derivatives.9
This is most probably due to the close neighborhood of the carbonyl and
the PhNI group, since electron acceptors at the 4-position of the
naphthalimide chromophore are known to quench its fluorescence.13
12 J. Olmsted, III, J. Phys. Chem., 1979, 83, 2581.
In summary, we have shown that upon combining intra-
molecular charge and electron transfer processes in a simple
fluorophore–spacer–receptor ionophore with a small but rigid
spacer, an efficient cation-triggered ‘switching on’ of the
intramolecular charge transfer fluorescence can selectively be
13 A. Pardo, J. M. L. Poyato and E. Martin, J. Photochem., 1987, 36,
323.
2104
Chem. Commun., 2000, 2103–2104