2726
R. W. DeSimone, C. A. Blum / Bioorg. Med. Chem. Lett. 10 (2000) 2723±2726
substituents were placed at positions 5 and 6 of 1a (Fig.
1). However, substitution of a methoxy group at the 5
position (1h) produced a deleterious eect on anity
while substitution with methyl or methoxy at the 6
position (1i and 1j) had an even greater negative impact
on receptor binding. Close examination of Figure 1
indicates that there is no position on 1 that is ideally
suited to project a substituent into the area of space
corresponding to the para position of CGS-8216 (where
interactions with L2 are maximized). It is plausible that
substituents at positions 5 or 6 of 1 encounter steric repul-
sions from regions (S1 or S2) present on the receptor.7
References and Notes
1. (a) Sieghart, W. Pharmacol. Rev. 1995, 47, 181. (b) Teuber,
L.; Watjen, F.; Jensen, L. H. Curr. Pharmaceut. Des. 1999, 5,
317.
2. (a) Bowery, N. G. In The GABA Receptors; Enna, S. J.,
Bowery, N. G., Eds.; Humana: NJ, 1997; pp 209±236. (b)
Gupta, S. P. In Progress in Drug Research; Jucker, E., Ed.;
Birkhauser Verlag: Basel, 1995; Vol. 45, pp 67±106.
3. Costa, E.; Guidotti, A. Trends Pharmacol. Sci. 1996, 17,
192, and references therein.
4. (a) Rudolph, U.; Crestani, F.; Benke, D.; Brunig, I.; Ben-
son, J.; Fritschy, J.-M.; Martin, J. R.; Bluethmann, H.; Moh-
ler, H. Nature 1999, 401, 796. (b) Mehta, A. K.; Ticku, M. K.
Brain Res. Rev., 1999, 29, 196.
5. Yokoyama, N.; Ritter, B.; Neubert, A. D. J. Med. Chem.
1982, 25, 337.
6. (a) Francis, J. E.; Cash, W. D.; Barbaz, B. S.; Bernard, P.
S.; Lovell, R. A.; Mazzenga, G. C.; Friedmann, R. C.; Hyun,
J. L.; Braunwalder, A. F.; Loo, P. S.; Bennett, D. A. J. Med.
Chem. 1991, 34, 281. (b) Francis, J. E.; Bennett, D. A.;
Hyun, J. L.; Rovinski, S. L.; Amrick, C. L.; Loo, P. S.;
Murphy, D.; Neale, R. F.; Wilson, D. E. J. Med. Chem.
1991, 34, 2899.
7. (a) Liu, R.; Hu, R. J.; Zhang, P.; Skolnick, P.; Cook, J. M.
J. Med. Chem. 1996, 39, 1928. (b) Zhang, W.; Koehler, K. F.;
Zhang, P.; Cook, J. M. Drug Des. Discov. 1995, 12, 193. (c)
Cox, E. D.; Diaz-Arauzo, H.; Huang, Q.; Reddy, M. S.; Ma,
C.; Harris, B.; McKernan, R.; Skolnick, P.; Cook, J. M. J.
Med. Chem. 1998, 41, 2537.
As with the D-ring, substitution of ¯uorine at positions
8 or 9 (1l and 1m) of the A-ring produced only modest
eects on receptor anity. It has been reported that
electron withdrawing substituents (e.g., Cl) at the 5-
position (position 8 of compound 1) of indolic BZR
ligands can enhance binding anity.16 However, place-
ment of a ¯uorine at position 8 (compound 1l) did not
improve receptor anity. Combining the best ¯uorine
substituents from the A-ring and the D-ring yielded 1o,
which showed about a 4-fold gain in potency relative to
1a. Incorporation of a nitrogen into the A-ring of 1a
yielded a compound (1q) with a more than 10-fold
decrease in potency at the BZR.
The SAR of the corresponding tetrahydro-
benzimidazolone series (9) closely paralleled that of the
aromatic series (1) with the former having a slightly
greater anity for the BZR (Table 2). Previous obser-
vations suggest that a more three-dimensional A-ring or
one bearing substituents capable of forming lipophilic
interactions in this area of space (e.g., placement of Cl
at position 9 of CGS-13767)6a can have a positive in¯u-
ence on binding anity. Indeed, this is the case when
moving to the more lipophilic seven-membered ring
homologues of the present series (10a±10n) with several
compounds having Kis of less than 10 nM at the BZR
(Table 2). Compounds 10a±n exhibited as much as a 30-
fold increase in anity relative to the analogous benz-
imidazolones (1) re¯ecting a more favorable interaction
with the receptor. In the case of compounds such as
CGS-13767, which are thought to bind in a similar
fashion to those of the present series, an increased
interaction with this lipophilic pocket is often accom-
panied by an increase in agonist function.
8. Structures shown in Figure 1 were minimized on a Silicon
Graphics Indigo 2 Personal workstation using SYBYL (Tripos
Associates, St. Louis, MO).
9. Allen, M. S.; Tan, Y.-C.; Trudell, M. L.; Narayanan, K.;
Schindler, L. R.; Martin, M. J.; Schultz, C.; Hagen, T. J.;
Koehler, K. F.; Codding, P. W.; Skolnick, P.; Cook, J. M. J.
Med. Chem. 1990, 33, 2343.
10. Forster, H.; Boehm, S.; Marhold, A.; Santel, H.; Luers-
sen, K.; Schmidt, R. R. Eur. Patent 0 572 893, 1993; Chem.
Abstr. 1993, 120, 164158.
11. (a) Yamato, M.; Takeuchi, Y.; Hashigaki, K.; Hirota, T.
Chem. Pharm. Bull. 1983, 31, 733. (b) Chu-Moyer, M. Y.;
Berger, R. J. Org. Chem. 1995, 60, 5721.
12. Compounds gave correct mass spectral analysis and had
NMR spectroscopic data consistent with the structures given.
13. Van Allan, J. A.; Deacon, B. D. Organic Syntheses; Wiley:
New York, 1963; Collect. Vol. IV, pp 569±570.
14. Zav'yalov, S. I.; Sitkareva, I. V.; Ezhova, G. I.; Dor-
ofeeva, O. V.; Zavozin, A. G. Khim. Geterotsikl. Soedin. 1990,
6, 847; Chem. Abstr. 1991, 114, 23873.
3
15. Compounds were assayed for their ability to displace H-
RO15-1788 (3H-Flumazenil) from rat cortical tissue. For con-
ditions see: (a) Thomas, J. W.; Tallman, J. F. J. Neurosci.
1983, 3, 433. (b) Thomas, J.; Tallman, J. J. Biol. Chem. 1981,
256, 9838. (c) DeSimone, R. W.; Blum, C. A. US Patents 5 637
724, 1997; 5 637 725, 1997; 5 936 095, 1999.
The compounds of the present series are structurally
unique and display good to moderate anity for the
BZR. The pharmacology of this series and its potential
to produce anxiolytic or sedative/hypnotic eects
devoid of the adverse side-eects frequently associated
with other BZ ligands, will be reported in due course.
16. Primo®ore, G.; Marini, A. M.; DaSettimo, F.; Martini,
C.; Bardellini, A.; Giannacchini, G.; Lucacchini, A. J. Med.
Chem. 1989, 32, 2514.