ACS Medicinal Chemistry Letters
Letter
(20) Carlson, T.; Kroenke, M.; Rao, P.; Lane, T. E.; Segal, B. The
Th17-ELR+CXC chemokine pathway is essential for the development
of central nervous system autoimmune disease. J. Exp. Med. 2008, 205,
811−823.
AUTHOR INFORMATION
Corresponding Authors
Notes
■
(21) Davis, F. A. Pathophysiology of multiple sclerosis and related
clinical implications. Mod. Treat 1970, 7, 890−902.
(22) Benedict, R. H.; Bobholz, J. H. Multiple sclerosis. Semin. Neurol.
2007, 27, 78−85.
The authors declare no competing financial interest.
(23) Dwyer, M. P.; Yu, Y. CXCR2 modulators: a patent review
(2009−2013). Expert Opin. Ther. Pat. 2014, 24, 519−534.
(24) Dwyer, M. P.; Yu, Y. CXCR2 Receptor Antagonists: A
Medicinal Chemistry Perspective. Curr. Top. Med. Chem. 2014, 14,
1590−1605.
(25) Widdowson, K. L.; Elliott, J. D.; Veber, D. F.; Nie, H.; Rutledge,
M. C.; McCleland, B. W.; Xiang, J.-N.; Jurewicz, A. J.; Hertzberg, R. P.;
Foley, J. J.; Griswold, D. E.; Martin, L.; Lee, J. M.; White, J. R.; Sarau,
H. M. Evaluation of potent and selective small-molecule antagonists
for the CXCR2 chemokine receptor. J. Med. Chem. 2004, 47, 1319−
1321.
(26) Dwyer, M. P.; Yu, Y.; Chao, J.; Aki, C.; Chao, J.; Biju, P.;
Girijavallabhan, V.; Rindgen, D.; Bond, R.; Mayer-Ezel, R.; Jakway, J.;
Hipkin, R. W.; Fossetta, J.; Gonsiorek, W.; Bian, H.; Fan, X.;
Terminelli, C.; Fine, J.; Lundell, D.; Merritt, J. R.; Rokosz, L. L.;
Kaiser, B.; Li, G.; Wang, W.; Stauffer, T.; Ozgur, L.; Baldwin, J.;
Taveras, A. G. Discovery of 2-Hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-
methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}-
benzamide (SCH 527123): A potent, orally bioavailable CXCR2/
CXCR1 receptor antagonist. J. Med. Chem. 2006, 49, 7603−7606.
(27) Porter, D. W.; Bradley, M.; Brown, Z.; Charlton, S. J.; Cox, B.;
Hunt, P.; Janus, D.; Lewis, S.; Oakley, P.; Connor, D.; Reilly, J.; Smith,
N.; Press, N. J. The discovery of potent, orally bioavailable pyrimidine-
5-carbonitrile-6-alkyl CXCR2 receptor antagonists. Bioorg. Med. Chem.
Lett. 2014, 24, 3285−3290.
(28) Maeda, D. Y.; Peck, A. M.; Schuler, A. D.; Quinn, M. T.;
Kirpotina, L. N.; Wicomb, W. N.; Fan, G.; Zebala, J. A. Discovery of 2-
[5-(4-Fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]-
phenylboronic Acid (SX-517): Noncompetitive Boronic Acid
Antagonist of CXCR1 and CXCR2. J. Med. Chem. 2014, 57, 8378−
8397.
(29) Ha, H.; Debnath, B.; Odde, S.; Bensmn, T.; Ho, H.; Beringer, P.
M.; Neamati, N. Discovery of Novel CXCR2 Inhibitors Using Ligand-
Based Pharmacophore Models. J. Chem. Inf. Model. 2015, 55, 1720−
1738.
(30) Austin, R. P.; Bennion, C.; Bonnert, R. V.; Cheema, L.; Cook, A.
R.; Cox, R. J.; Ebden, M. R.; Gaw, A.; Grime, K.; Meghani, P.;
Nicholls, D.; Phillips, C.; Smith, N.; Steele, J.; Stonehouse, J. P.
Discovery and evaluation of a novel monocyclic series of CXCR2
antagonists. Bioorg. Med. Chem. Lett. 2015, 25, 1616−1620.
(31) Nicholls, D. J.; Wiley, K.; Dainty, I.; Maclntosh, F.; Phillips, C.;
Gaw, A.; Mardh, C. K. Pharmacological Characterization of AZD5069,
a Slowly Reversible CXC Chemokine Receptor 2 Antagonists. J.
Pharmacol. Exp. Ther. 2015, 353, 340−350.
(32) Jin, Q.; Nie, H.; McCleland, B. W.; Widdowson, K. L.; Palovich,
M. R.; Elliott, J. D.; Goodman, R. M.; Burman, M.; Sarau, H. M.;
Ward, K. W.; Nord, M.; Orr, B. M.; Gorycki, P. D.; Busch-Petersen, J.
Discovery of potent and orally bioavailable N,N′-diarylurea antagonists
for the CXCR2 chemokine receptor. Bioorg. Med. Chem. Lett. 2004, 14,
4375−4378.
ACKNOWLEDGMENTS
■
We thank Dr. Jakob Busch-Petersen for his helpful discussions.
REFERENCES
■
(1) Fernandez, E. J.; Lolis, E. Structure, function, and inhibition of
chemokines. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 469−499.
(2) Laing, K. J.; Secombes, C. J. Chemokines. Dev. Comp. Immunol.
2004, 28, 443−460.
(3) Hesselgesser, J.; Horuk, R. Chemokine and chemokine receptor
expression in the central nervous system. J. NeuroVirol. 1999, 5, 13−
26.
́
(4) Murphy, P. M.; Baggiolini, M.; Charo, I. F.; Hebert, C. A.; Horuk,
R.; Matsushima, K.; Miller, L. H.; Oppenheim, J. J.; Power, C. A.
International union of pharmacology. XXII. Nomenclature for
chemokine receptors. Pharmacol. Rev. 2000, 52, 145−176.
(5) Onuffer, J. J.; Horuk, R. Chemokines, chemokine receptors and
small-molecule antagonists: recent developments. Trends Pharmacol.
Sci. 2002, 23, 459−467.
(6) Proudfoot, A. E. I. Chemokine receptors: multifaceted
therapeutic targets. Nat. Rev. Immunol. 2002, 2, 106−115.
(7) Horuk, R. Chemokine receptor antagonists: overcoming
developmental hurdles. Nat. Rev. Drug Discovery 2009, 8, 23−33.
(8) Sobolik-Delmaire, T.; Raman, D.; Sai, J.; Fan, G.; Richmond, A.
Encyclopedia of Biological Chemistry (Second Edition) 2013, 480−485.
(9) Charo, I. F.; Ransohoff, R. M. The many roles of chemokines and
chemokine receptors in inflammation. N. Engl. J. Med. 2006, 354,
610−621.
(10) Tran, P. B.; Miller, R. J. Chemokine receptors: signposts to
brain development and disease. Nat. Rev. Neurosci. 2003, 4, 444−455.
(11) Bizzarri, C.; Beccari, A. R.; Bertini, R.; Cavicchia, M. R.;
Giorgini, S.; Allegretti, M. ELR+ CXC chemokines and their receptors
(CXC chemokine receptor 1 and CXC chemokine receptor 2) as new
therapeutic targets. Pharmacol. Ther. 2006, 112, 139−149.
(12) Schwarz, M. K.; Wells, T. N. C. New therapeutics that modulate
chemokine networks. Nat. Rev. Drug Discovery 2002, 1, 347−358.
(13) Chapman, R. W.; Phillips, J. E.; Hipkin, R. W.; Curran, A. K.;
Lundell, D.; Fine, J. S. CXCR2 antagonists for the treatment of
pulmonary disease. Pharmacol. Ther. 2009, 121, 55−68.
(14) Donnelly, L. E.; Barnes, P. J. Chemokine receptor CXCR2
antagonism to prevent airway inflammation. Drugs Future 2011, 36,
465−472.
(15) Barnes, P. J. New anti-inflammatory targets for chronic
obstructive pulmonary disease. Nat. Rev. Drug Discovery 2013, 12,
543−559.
(16) Tsai, H. H.; Frost, E.; To, V.; Robinson, S.; ffrench-Constant,
C.; Geertman, R.; Ransohoff, R. M.; Miller, R. H. The chemokine
receptor CXCR2 controls positioning of oligodendrocyte precursors in
developing spinal cord by arresting their migration. Cell 2002, 110,
373−383.
(33) Busch-Petersen, J.; Wang, Y. Phenol-containing antagonists of
the CXCR2 receptor. Expert Opin. Ther. Pat. 2008, 18, 629−637.
(34) Lu, H.; Yang, T.; Xu, Z.; Wren, P. B.; Zhang, Y.; Cai, X.; Patel,
M.; Dong, K.; Zhang, Q.; Zhang, W.; Guan, X.; Xiang, J.; Elliott, J. D.;
Lin, X.; Ren, F. 2-Aminopyrimidin-4(1H)-one as the novel bioisostere
of urea: Discovery of novel and potent CXCR2 antagonists. Bioorg.
Med. Chem. Lett. 2014, 24, 5493−5496 and references therein..
(35) Hitchcock, S. A.; Pennington, L. D. Structure-brain exposure
relationships. J. Med. Chem. 2006, 49, 7559−7583.
(17) Liu, L.; Belkadi, A.; Darnall, L.; Hu, T.; Drescher, C.; Cotleur, A.
C.; Padovani-Claudio, D.; He, T.; Choi, K.; Lane, T. E.; Miller, R. H.;
Ransohoff, R. M. CXCR2-positive neutrophils are essential for
cuprizone-induced demyelination: relevance to multiple sclerosis.
Nat. Neurosci. 2010, 13, 319−326.
(18) Liu, L.; Darnall, L.; Hu, T.; Choi, K.; Lane, T. E.; Ransohoff, R.
M. Myelin Repair is accelerated by inactivating CXCR2 on
nonhematopoietic cells. J. Neurosci. 2010, 30 (27), 9074−9083.
(19) Kerstetter, A. E.; Padovani-Claudio, D. A.; Bai, L.; Miller, R. H.
Inhibition of CXCR2 signaling promotes recovery in models of
multiple sclerosis. Exp. Neurol. 2009, 220, 44−56.
(36) Mahar Doan, K. M.; Humphreys, J. E.; Webster, L. O.; Wring, S.
A.; Shampine, L. J.; Serabjit-Singh, C. J.; Adkison, K. K.; Polli, J. W.
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX