4
Tetrahedron Letters
activity being observed after six consecutive runs. A possible
reaction mechanism and catalytic mode were also proposed.
Dai, Y.; Lu, J. ACS Appl. Mater. Interfaces 2015, 7, 9023.
(h) Obregón, S.; Zhang, Y.; Colón, G. Appl. Catal. B 2016,
184, 96.
9
Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M.
Tetrahedron Lett. 2016, 57, 1771.
Acknowledgments
10 Liu, W.; Wang, C.; Huang, Y.; Chen, Q.; Wang, L.; He, M.
Synth. Commun. 2016, 46, 1268.
11 Liu, W.; Wang, C.; Wang, L. Ind. Eng. Chem. Res. 2017,
56, 6114.
We gratefully acknowledge financial support from the
National Natural Science Foundation of China (21302014 and
21676030), the Jiangsu Key Laboratory of Advanced Catalytic
Materials and Technology (BM2012110), the Priority Academic
Program Development (PAPD) of Jiangsu Higher Education
Institutions, and the Advanced Catalysis and Green
Manufacturing Collaborative Innovation Center of Changzhou
University of Changzhou University.
12 General procedure for synthesis of 2,5-diaryl 1,3,4-
oxadiazoles and reuse of the catalyst: A sealed tube
equipped with a magnetic stir bar was charged with
acylhydrazine 1 (0.5 mmol), α-keto acid 2 (0.5 mmol),
K2CO3 (1 mmol), PANI-g-C3N4-TiO2 (40 mg) and DMF
(5.0 mL). The mixture was then irradiated with a 14 W
CFL and stirred at room temperature (25 °C) for 24 h. The
distance of the reaction vial from the light is about 5
centimeters. After reaction, the mixture was diluted with
EtOAc (10 mL) and H2O (5 mL), and the solid catalyst was
recovered by centrifugation. The aqueous phase was
extracted with EtOAc (5 mL × 3). The collected organic
extracts were dried on Na2SO4, filtered and evaporated to
dryness. The crude was purified by flash chromatography
on silica gel using a mixture of PE/EA (20:1) to give the
pure product 3. The recovered catalyst was then washed
with ethanol and deionized water, dried under vacuum, and
reused for the next run.
References and notes
1
(a) Suwinski, J.; Szczepankiewicz, W. In Comprehensive
Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden,
C.A.; Scriven, E.F.V.; Taylor, R.J.K. Eds.; Elsevier:
Amsterdam, 2008; Vol. 5, pp 447-459. (b) Omar, F.A.;
Mahfouz, N.M.; Rahman, M.A. Eur. J. Med. Chem. 1996,
31, 819. (c) He, G.S.; Tan, L.S.; Zheng, Q.; Prasad, P.N.
Chem. Rev. 2008, 108, 1245.
2
3
(a) Li, A.F.; Ruan, Y.B.; Jiang, Q.Q.; He, W.B.; Jiang,
Y.B. Chem. Eur. J. 2010, 16, 5794. (b) Pouliot, M.F.;
Angers, L.; Hamel, J.D.; Paquin, J.F. Org. Biomol. Chem.
2012, 10, 988.
(a) Guin, S.; Ghosh, T.; Rout, S.K.; Banerjee, A.; Patel,
B.K. Org. Lett. 2011, 13, 5976. (b) Dabiri, M.; Salehi, P.;
Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron. Lett.
2006, 47, 6983.
13 Lv, L.; Xi, H.; Bai, X.; Li, Z. Org. Lett. 2015, 17, 4324.
14 Ge, L.; Han, C.C.; Liu, J. J. Mater. Chem. 2012, 22, 11843.
15 Ge, L.; Han, C.C.; Liu, J. Appl. Catal. B 2011, 108-109,
100.
4
5
Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura,
M. Org. Lett. 2009, 11, 3072.
(a) Huisgen, R.; Sauer, J.; Sturm, H.J. Angew. Chem. 1958
70, 272. (b) Wang, L.; Cao, J.; Chen, Q.; He, M. J. Org.
Chem. 2015, 80, 4743. (c) Li, Z.; Wang, L. Adv. Synth.
Catal. 2015, 57, 3469. (d) Cao, J.; Wang, L. Chin. J. Chem.
2015, 33, 1239.
6
7
(a) Yadav, A.K.; Yadav, L.D.S. Tetrahedron. Lett. 2014,
55, 2065. (b) Xu, C.; Jia, F.C.; Cai, Q.; Li, D.K.; Zhou,
Z.W.; Wu, A.X. Chem. Commun. 2015, 51, 6629. (b) Gao,
P.; Wang, J.; Bai, Z.; Cheng, H.; Xiao, J.; Lai, M.; Yang,
D.; Fan, M. Tetrahedron. Lett. 2016, 57, 4616. (d) Diao, P.;
Ge, Y.; Zhang, W.; Xu, C.; Zhang, N.; Guo, C.
Tetrahedron. Lett. 2018, 59, 767.
(a) Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Chem.
Rev. 2013, 113, 5322. (b) Beatty, J.W.; Stephenson, C.R.J.
Acc. Chem. Res. 2015, 48, 1474. (c) Chen, J.; Hu, X.; Lu,
L.; Xiao, W. Chem. Soc. Rev. 2016, 45, 2044. (d) Lang, X.;
Zhao, J.; Chen, X. Chem. Soc. Rev. 2016, 45, 3026. (e)
Corrigan, N.; Shanmugam, S.; Xu, J.; Boyer, C. Chem. Soc.
Rev. 2016, 45, 6165. (f) Chen, J.R.; Hu, X.Q.; Lu, L.Q.;
Xiao, W.J. Acc. Chem. Res. 2016, 49, 1911. (g) Xie, J.; Jin,
H.; Hashmi, A.S.K. Chem. Soc. Rev. 2017, 46, 5193.
(a) Tada, H.; Jin, Q.; Nishijima, H.; Yamamoto, H.;
Fujishima, M.; Okuoka, S.; Hattori, T.; Sumida, Y.;
Kobayashi, H. Angew. Chem. Int. Ed. 2011, 50, 3501. (b)
Jin, Q.; Ikeda, T.; Fujishima, M.; Tada, H. Chem. Commun.
2011, 47, 8814. (c) Harb, M.; Sautet, P.; Raybaud, P. J.
Phys. Chem. C 2013 117, 8892. (d) Tang, J.; Grampp, G.;
Liu, Y.; Wang, B.; Tao, F.; Wang, L.; Liang, X.; Xiao, H.;
Shen, Y. J. Org. Chem. 2015, 80, 2724. (e) Lennox, A.J.;
Bartels, P.; Pohl, M.M.; Junge, H.; Beller, M. J. Catal.
2016, 340, 177. (f) Kondo, K.; Murakami, N.; Ye, C.;
Tsubota, T.; Ohno, T. Appl. Catal. B 2013, 142-143, 362.
(g) Li, K.; Gao, S.; Wang, Q.; Xu, H.; Wang, Z.; Huang, B.;
8