6360
K. Takaki et al. / Tetrahedron Letters 42 (2001) 6357–6360
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetra-
hedron Lett. 1980, 21, 3595–3598; (c) Holt, D. A.; Erb, J.
M. Tetrahedron Lett. 1989, 30, 5393–5396.
8. Takaki, K.; Kamata, T.; Miura, Y.; Shishido, T.; Take-
hira, K. J. Org. Chem. 1999, 64, 3891–3895.
9. Similarly, alkenylphosphines 3a% and 3b% were obtained in
85 and 69% isolated yields, respectively, by the reaction
of 2a and 2b without the oxidative workup (cf. Table 1).
10. Of the substrates in Tables 1 and 2, phenylacetylene and
a-methylstyrene reacted with Ph2PH in the absence of the
catalyst 1 under reflux for 13 h: the former gave 3d in
quantitative yield with reversed stereoselectivity (E/Z=
32/68) and the latter gave 7a in lower yield (40%).
However, no reaction took place at room temperature.
11. (a) Taillefer, M.; Cristau, H. J. Tetrahedron Lett. 1998,
39, 7857–7860; (b) Breslow, R.; Deuring, L. A. Tetra-
hedron Lett. 1984, 25, 1345–1348.
2. (a) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118,
1571–1572; (b) Han, L.-B.; Hau, R.; Tanaka, M. Angew.
Chem., Int. Ed. 1998, 37, 94–96; (c) Han, L.-B.; Choi, N.;
Tanaka, M. Organometallics 1996, 15, 3259–3261.
3. Alkenylphosphines are prepared conventionally from
alkenylmetals (Mg and Li) and R2PCl. Radical and base
(tBuOK and PhLi)-catalyzed addition of R2PH to alkynes
are also available for their synthesis, for example, see: (a)
Heesche-Wagner, K.; Mitchell, T. N. J. Organomet.
Chem. 1994, 468, 99–106; (b) Schmidbaur, H.; Frazao, C.
M.; Reber, G.; Muller, G. Chem. Ber. 1989, 122, 259–
263.
4. (a) Wicht, D. K.; Kourkine, I. V.; Lew, B. M.; Nthenge,
J. M.; Glueck, D. S. J. Am. Chem. Soc. 1997, 119,
5039–5040; (b) Pringle, P. G.; Brewin, D.; Smith, M. B.;
Worboys, K. In Aqueous Organometallic Chemistry and
Catalysis; Horvath, I. T.; Joo, F., Eds.; Kluwer: Dor-
drecht, 1995; Vol. 5, pp. 111–122; (c) Pringle, P. G.;
Smith, M. B. J. Chem. Soc., Chem. Commun. 1990,
1701–1702; (d) Nagel, U.; Rieger, B.; Bublewitz, A. J.
Organomet. Chem. 1989, 370, 223–239.
12. Mitchell, T. N.; Heesche, K. J. Organomet. Chem. 1991,
409, 163–170.
13. Following results were obtained: 3a%, 15 h reaction, 79%
yield, E/Z=0/100; 3b%, 15 h, 10%; 3c%, (10 min, 10%,
1/99), (1.5 h, 69%, 9/91), (30 h, 69%, 17/83); 3g%, 18 h,
trace; 3h%, (30 min, 26%, 13/87), (4 h, 71%, 22/78), (52 h,
62%, 28/72).
14. Ph2CDN(Ph)-Yb-PPh2, a primary product from 1 and
Ph2PD, can be presumed as the intermediate A, but it
may be changed to other phosphide species like
Yb(PPh2)2 by further reaction with the phosphine or
disproportionation.
15. It has been known that trivalent lanthanide amides cata-
lyze inter- and intramolecular hydroamination of alkynes
and alkenes, see: (a) Li, Y.; Marks, T. J. Organometallics
1996, 15, 3770–3772; (b) Li, Y.; Marks, T. J. J. Am.
Chem. Soc. 1996, 118, 9295–9306 and references cited
therein. However, products anticipated by this type of
reaction were not detected in the present system.
16. Schumann, H.; Palamidis, E.; Loebel, J. J. Organomet.
Chem. 1990, 384, C49–C52.
5. (a) Douglass, M. R.; Marks, T. J. J. Am. Chem. Soc.
2000, 122, 1824–1825; (b) Giardello, M. A.; King, W. A.;
Nolan, S. P.; Porchia, M.; Sishta, C.; Marks, T. J. In
Energetics of Organometallic Species; Martinho Simoes,
J. A., Ed.; Kluwer: Dordrecht, 1992; pp. 35–51.
6. Makioka, Y.; Taniguchi, Y.; Fujiwara, Y.; Takaki, K.;
Hou, Z.; Wakatsuki, Y. Organometallics 1996, 15, 5476–
5478.
7. Takaki, K.; Kurioka, M.; Kamata, T.; Takehira, K.;
Makioka, Y.; Fujiwara, Y. J. Org. Chem. 1998, 63,
9265–9269.
.