Journal of the American Chemical Society
Communication
(8) Hahn, R.; Schmidt-Stein, F.; Salonen, J.; Thiemann, S.; Song, Y.;
Kunze, J.; Lehto, V.-P.; Schmuki, P. Semimetallic TiO2 Nanotubes.
Angew. Chem., Int. Ed. 2009, 48, 7236.
with tunable electronic structure, lattice oxygen activity, and
surface acidity/basicity.
(9) Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and
Applications. Angew. Chem., Int. Ed. 2011, 50, 2904.
(10) Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor
Applications. Chem. Rev. 2014, 114, 10131.
(11) Cargnello, M.; Gordon, T. R.; Murray, C. B. Solution-Phase
Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. Chem.
Rev. 2014, 114, 9319.
(12) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S.
C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 Single Crystals with a
Large Percentage of Reactive Facets. Nature 2008, 453, 638.
(13) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber,
R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of TiO2
Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy
Concentration, and Photocatalytic Activity. J. Am. Chem. Soc. 2012,
134, 6751.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Materials and methods, Scheme S1, Table S1, and
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
(14) Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Kipp, T.;
Cingolani, R.; Cozzoli, P. D. Nonhydrolytic Synthesis of High-Quality
Anisotropically Shaped Brookite TiO2 Nanocrystals. J. Am. Chem. Soc.
2008, 130, 11223.
(15) Qin, D.-D.; Bi, Y.-P.; Feng, X.-J.; Wang, W.; Barber, G. D.;
Wang, T.; Song, Y.-M.; Lu, X.-Q.; Mallouk, T. E. Hydrothermal
Growth and Photoelectrochemistry of Highly Oriented, Crystalline
Anatase TiO2 Nanorods on Transparent Conducting Electrodes.
Chem. Mater. 2015, 27, 4180.
Author Contributions
́
(16) Bai, Y.; Mora-Sero, I.; De Angelis, F.; Bisquert, J.; Wang, P.
#Z.Z., Q.W., and G.J. contributed equally to this work.
Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chem.
Notes
Rev. 2014, 114, 10095.
(17) Gao, X.; Li, G.; Xu, Y.; Hong, Z.; Liang, C.; Lin, Z. TiO2
Microboxes with Controlled Internal Porosity for High-Performance
Lithium Storage. Angew. Chem., Int. Ed. 2015, 54, 14331.
(18) Yu, X.-Y.; Wu, H. B.; Yu, L.; Ma, F.-X.; Lou, X. W. Rutile TiO2
Submicroboxes with Superior Lithium Storage Properties. Angew.
Chem., Int. Ed. 2015, 54, 4001.
(19) Singh, D. P.; George, A.; Kumar, R. V.; ten Elshof, J. E.;
Wagemaker, M. Nanostructured TiO2 Anatase Micropatterned Three-
Dimensional Electrodes for High-Performance Li-Ion Batteries. J.
Phys. Chem. C 2013, 117, 19809.
(20) Pepin, P. A.; Diroll, B. T.; Choi, H. J.; Murray, C. B.; Vohs, J.
M. Thermal and Photochemical Reactions of Methanol, Acetalde-
hyde, and Acetic Acid on Brookite TiO2 Nanorods. J. Phys. Chem. C
2017, 121, 11488.
(21) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D.
W.; Hutchings, G. J. Solvent-free Oxidation of Primary Alcohols to
Aldehydes Using Au-Pd/TiO2 Catalysts. Science 2006, 311, 362.
(22) Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2
Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev.
1995, 95, 735.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the U.S. National Science
Foundation (CBET-1805022). Partial work on electron
microscopy was carried out at the Center for Functional
Nanomaterials, which is a U.S. Department of Energy Office of
Science Facility, at Brookhaven National Laboratory under
Contract No. DE-SC0012704. We appreciate experimental
support from Sirine Fakra at the Advanced Light Source. The
Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH1123. C.B.M. and J.D.L. acknowledge partial support
provided by the Vagelos Institute of Energy Science and
Technology at the University of Pennsylvania.
REFERENCES
■
(1) Gilroy, K. D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y.
Bimetallic Nanocrystals: Syntheses, Properties, and Applications.
Chem. Rev. 2016, 116, 10414.
(23) Wang, C. J.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.;
Matranga, C. Size-dependent photocatalytic reduction of CO2 with
PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J.
Mater. Chem. 2011, 21, 13452.
(2) Wu, Y.; Wang, D.; Li, Y. Nanocrystals from Solutions: Catalysts.
Chem. Soc. Rev. 2014, 43, 2112.
(24) Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H.
Photocatalytic CO2 Reduction by TiO2 and Related Titanium
Containing Solids. Energy Environ. Sci. 2012, 5, 9217.
(25) Hu, J.-L.; Qian, H.-S.; Li, J.-J.; Hu, Y.; Li, Z.-Q.; Yu, S.-H.
Synthesis of Mesoporous SiO2@TiO2 Core/Shell Nanospheres with
Enhanced Photocatalytic Properties. Part. Part. Syst. Charact. 2013,
30, 306.
(26) Ting, K. W.; Toyao, T.; Siddiki, S. M. A. H.; Shimizu, K.-i.
Low-Temperature Hydrogenation of CO2 to Methanol over
Heterogeneous TiO2-Supported Re Catalysts. ACS Catal. 2019, 9,
3685.
(3) Zhou, Z.-Y.; Tian, N.; Li, J.-T.; Broadwell, I.; Sun, S.-G.
Nanomaterials of High Surface Energy with Exceptional Properties in
Catalysis and Energy Storage. Chem. Soc. Rev. 2011, 40, 4167.
(4) Cargnello, M.; Gordon, T. R.; Murray, C. B. Solution-Phase
Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. Chem.
Rev. 2014, 114, 9319.
(5) Wang, L.; Holewinski, A.; Wang, C. Prospects of Platinum-Based
Nanostructures for the Electrocatalytic Reduction of Oxygen. ACS
Catal. 2018, 8, 9388.
(6) Xia, Y.; Yang, H.; Campbell, C. T. Nanoparticles for Catalysis.
Acc. Chem. Res. 2013, 46, 1671.
(27) Widmann, D.; Behm, R. J. Active Oxygen on a Au/TiO2
Catalyst: Formation, Stability, and CO Oxidation Activity. Angew.
Chem., Int. Ed. 2011, 50, 10241.
(7) Xu, L.; Liang, H.-W.; Yang, Y.; Yu, S.-H. Stability and Reactivity:
Positive and Negative Aspects for Nanoparticle Processing. Chem. Rev.
2018, 118, 3209.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX