4002
J . Org. Chem. 1997, 62, 4002-4006
Syn -Selective Mich a el Ad d ition of Nitr om eth a n e Der iva tives to
En oa tes Der ived fr om (R)-(+)-Glycer a ld eh yd e Aceton id e
J eronimo S. Costa,† Ayres G. Dias,†,‡ Aline L. Anholeto,† Moˆnica D. Monteiro,†
Vera L. Patrocinio,*,§ and Paulo R. R. Costa*,†
Laborato´rio de Sı´ntese Orgaˆnica I, Laborato´rio de S´ıntese Orgaˆnica III, Nu´cleo de Pesquisas de Produtos
Naturais, Universidade Federal do Rio de J aneiro, CCS, Bloco-H, Ilha da cidade Universita´ria,
21941-590, Rio de J aneiro, RJ , Brazil, and Instituto de Qu´ımica,
Universidade Estadual do Rio de J aneiro
Received April 29, 1996X
We report the syn-selective Michael addition of a series of substituted primary and secondary
nitromethane derivatives 4a -g to chiral enoates (Z)-2a and (E)-2a in the presence of TBAF‚3H2O
or DBU. Regardless of the base employed, adducts syn-5a -g were obtained in good de (80-100%)
from the reactions of 4a -g with (Z)-2a . However, in the addition to (E)-2a , the syn-diastereo-
selectivities depended on the structure of the nucleophile (80-90% de for nitromethane (4a ), 80%
de for phenylnitromethane (4g), 50 and 34% de for the primary nitromethane derivatives 4b and
4d , and 0 and 6% de for the secondary nitromethane derivatives 4c and 4f). A mixture of epimers
(2:1/1:1) was obtained at the chiral center bearing the nitro group in 5b and 5d -g. The syn/anti
ratio C-3,C-4 is kinetically controlled, while the epimeric ratio at the CNO2 chiral center (C-1′)
seems to be thermodynamically controlled. Adducts 5a ,b,c,g were transformed into the respective
cis-â,γ-disubstituted γ-butyrolactones 6a , 7, 9a , and 9c. A mechanistic rationale to explain the
observed diastereoselectivities is proposed.
In tr od u ction
Different strategies using the Michael addition of
nucleophiles to R,â-unsaturated carbonyl compounds
have been developed to obtain enantiomerically enriched
adducts.1 In particular, the use of enantiomerically pure
Michael acceptors with a chiral center in the γ-position
bearing an oxygen has been extensively studied and is a
powerful tool in synthesis.1a-c,2 Compounds such as 2 are
among the most studied chiral Michael acceptors of this
type, since they can be easily prepared from (R)-(+)-
glyceraldehyde acetonide (1), a chiral building block
obtained from inexpensive D-(+)-mannitol3 (Figure 1).
The stereochemical outcome of these reactions depends
on the structure of the nucleophile, and both syn-1b,4,5 and
anti-addition1b,6 have been reported. In some cases, the
selectivity has been shown to be dependent on the
geometry of the double bond in the Michael acceptor.7
F igu r e 1. Diastereoselective Michael addition to enoates 2
derived from (R)-(+)-glyceraldehyde acetonide 1.
Recently, we described4 a highly syn-selective Michael
addition of nitromethane (4a ) to both enoates (Z)-2a and
(E)-2a in the presence of TBAF‚3H2O or DBU. Herein,
we disclose the results obtained in the addition of a series
of nitromethane derivatives 4b-g to these enoates
(Scheme 1).
† Laborato´rio de S´ıntese Orgaˆnica I, Universidade Federal do Rio
de J aneiro.
Resu lts
‡ Universidade Estadual do Rio de J aneiro.
§ Laborato´rio de S´ıntese Orgaˆnica III, Universidade Federal do Rio
de J aneiro.
In Scheme 1, our optimized results for the Michael
addition of 4a -g to (Z)-2a (Z/E ) 9/1) and (E)-2a (Z/ E
) 1/32) are presented. In the resulting adducts 5a -g a
new chiral center is diastereoselectively formed (C-3). In
adducts 5b and 5d -g, an additional chiral center, that
bearing the nitro group (C-1′), is also created. The
reactions were run with DBU in CH3CN9a or TBAF‚3H2O
in THF;9b,c the observed syn-5a -g/anti-5a -g ratios (C-
X Abstract published in Advance ACS Abstracts, May 15, 1997.
(1) (a) Yamamoto, Y.; Pyne, S. G.; Schinzer, D.; Feringa, B. L.;
J ansen J . F. G. A. In Stereoselective Synthesis; Helmchen, G., Hoff-
mann, R. W., Mulzer, J ., Schaumann, E., Eds.; Thieme: Stuttgart,
1995; Vol. E 21b. Little, R. D.; Masjedizadeh, M. R. Org. React. 1995,
47, 315. Cook, C. E.; Allen, D. A.; Miller, D. B.; Whisnant, C. C. J .
Am. Chem. Soc. 1995, 117, 7269. d’Angelo, J .; Cave´, C.; Desmaele, D.;
Dumas, F. Trends Org. Chem. 1993, 4, 555. (b) Leonard, J . Contemp.
Org. Synth. 1994, 387. (c) Rossiter, B. E.; Swingle, N. M. Chem. Rev.
1992, 92, 771.
(2) Yoshida, S.; Yamanaka, J .; Miyake, T.; Moritani, Y.; Ohmizu,
H.; Iwasaki, T. Tetrahedron Lett. 1995, 36, 7271. Revesz, L.; Briswalter,
C.; Heng, R.; Leutwiler, A.; Mueller, R.; Wuethrich, H. Tetrahedron
Lett. 1994, 35, 9693. Smajda, W.; Zahouily, M.; Malacria, M. Tetra-
hedron Lett. 1992, 38, 5511.
(3) Leonard, J .; Mohialdin, S.; Swain, P. A. Synth. Commun. 1989,
19, 3529. Mann, J .; Partlett, N.; Thomaz, A. J . Chem. Res., Synop.
1987, 369. Marshall, J . A.; Trometer, J . D.; Cleary, D. G. Tetrahedron
1989, 45, 391.
(7) Matsubara, S.; Yoshioka, M.; Utimoto, K. Chem. Lett. 1994, 827.
Morikawa, T.; Washio, Y; Harada, S.; Hanai, R.; Kayashita, T.; Nemoto,
H.; Shiro, M.; Taguchi, T. J . Chem. Soc., Perkin Trans. 1 1995, 1, 271.
(8) For recent studies in racemic series on the Michael of nitronates
see, inter alia: Francke, W.; Schro¨der, F.; Walter, F.; Sinnwell, V.;
Baumann, H.; Kaib, M. Liebigs Ann. 1995, 965. Thomas, A.; Rajappa,
S. Tetrahedron 1995, 51, 10571. Ballini, R.; Marziali, P.; Mozzicafreddo,
A J . Org. Chem. 1996, 61, 3209. Marti, R. E.; Helnzer, J .; Seebach, D.
Liebigs Ann. Chem. 1995, 7, 1193.
(4) Patrocinio, V. L.; Costa, P. R. R.; Correia, C. R. D. Synthesis 1994,
474.
(5) Nomura, M.; Kanemasa, S. Tetrahedron Lett. 1994, 35, 143.
(6) Nilsson, K.; Ullenius, C. Tetrahedron 1994, 50, 13173.
(9) (a) Ballini, R.; Bosica, G. Tetrahedron 1995, 51, 4213. Ono, N.;
Kamimura A.; Kaji, A. Synthesis 1984, 226. (b) Clark, J . H. Chem.
Rev. 1980, 80, 429. (c) The use of old solutions of TBAF‚3H2O in THF
can lead to a decrease in the chemical yield.
S0022-3263(96)00788-8 CCC: $14.00 © 1997 American Chemical Society