1160
T. R. Varga et al. / Tetrahedron Letters 48 (2007) 1159–1161
O
O
(v)
(iii)-(iv)
O
(i)-(ii)
(vi)
N
Y
4 Y = O
5 Y = S
X
2
CH2
1
3a X = Br
3b X = N3
(vii)
N+
(ix)
(viii)
N
N
-
ClO4
H3C
H3C
H3C
6
7
8
O
O
H
N
H
8
1
3
7
6
9
2
(xii)
(xi)
N
(x)
N
5
4
5
O
O
1'
HO
10
9
11
2'
O
O
CH3
CH3
Scheme 1. Reagents, conditions and yields: (i) morpholine, cat. HCO2H, toluene, reflux, 4 h, 50%; (ii) H2C@CHCH2Br, CH3CN, reflux, 18 h, H2O,
reflux, 1 h, 29%; (iii) HBr gas, cat. (PhCO)2O2, n-pentane, rt, 1 h; (iv) NaN3, DMF, 35 ꢁC, 48 h; (v) TFA, rt, 1 h, 36% for (iii)–(v); (vi) Lawesson’s
reagent, THF, rt, 0.5 h, 95%; (vii) BrCH2COCH3, CH3CN, rt, 18 h, Ph3P, i-Pr2NEt, rt, 18 h, 43%; (viii) HClO4 aq, i-PrOH/CH2Cl2, rt, 5 h, 46%; (ix)
Zn(Hg), HCl aq, reflux, 18 h, 10%; (x) BrCH2CO2C2H5, CH3CN, rt, 18 h, Ph3P, i-Pr2NEt, CH3CN, rt, 18 h, 55%; (xi) H2, 1 MPa, cat. PtO2, EtOH,
rt, 3 h, quant.; (xii) LiAlH4, Et2O, rt, 0.5 h, 90%.
8. Aube, J.; Milligan, G. L. J. Am. Chem. Soc. 1991, 113,
8965–8966.
In conclusion, we have achieved a simple diastereoselec-
tive synthesis of 5-substituted indolizidines. The trans-
formations of esters 9 and 10 provide an opportunity
to prepare further new derivatives.
9. Yde, B.; Yousif, N. M.; Pedersen, U.; Thomsen, I.;
Lawesson, S. O. Tetrahedron 1984, 40, 2047–2052.
10. Data for 5: white crystals; mp 55–56 ꢁC; mmax/cmꢀ1 2938
(C–H), 1520 (C–N), 1109 (C@S); dH (250 MHz, CDCl3;
Me4Si) 3.85 (2H, m, 3-H2), 3.34 (1H, m, 9-H), 2.85 (2H, m,
6-H2), 1.20–2.25 (8H, br, 1-H2, 2-H2, 7-H2, 8-H2); dC
(63 MHz, CDCl3; Me4Si) 196.12 (C-5), 62.43 (C-9), 53.23
(C-3), 40.38 (C-8), 33.66 (C-6), 29.59 (C-1), 21.92 (C-7),
21.06 (C-2).
Acknowledgements
´
The research Grant NKB/2006 from Szent Istvan
University is greatly acknowledged. The authors are
´
indebted to Ms. Sarolta Gaal for her technical help in
11. Roth, M.; Dubs, P.; Go¨tschi, E.; Eschenmoser, A. Helv.
Chim. Acta 1971, 54, 710–734.
the synthesis.
12. The preparation of solid 6ÆHCl and 6ÆHBr failed due to the
low basicity of 6. Organic perchlorates are explosives,
therefore one should handle them with great care! Data for
7: pale yellow crystals; dH (400 MHz, CD3NO2; Me4Si)
1.95 (2H, s, CH2CO), 1.91 (1H, m, 3a-H), 1.70–1.78 (2H,
m, 3b-H, 1-H), 0.77 (1H, m, 6a-H), 0.66 (1H, m, 6b-H),
0.22–0.33 (2H, m, 7a-H, 2a-H), 0.16 (3H, s, CH3), ꢀ0.38 to
0.05 (5H, m, 2-H2, 8-H2, 2b-H), ꢀ0.62 (1H, m, 7b-H); dC
(100 MHz, CD3NO2; Me4Si) 201.58 (CO), 183.75 (C-5),
66.90 (C-9), 54.87 (C-3), 51.08 (CH2CO), 34.16 (C-6), 32.08
(C-2), 30.63 (CH3), 26.69 (C-7), 22.31 (C-1), 18.45 (C-8).
13. Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. J. Am.
Chem. Soc. 1973, 95, 3662–3668.
References and notes
1. Gilchrist, T. L. Heterocyclic Chemistry; Addison Wesley
Longman: UK, 1997; pp 193–207.
2. Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod.
2005, 68, 1556–1575.
3. Robinson, R. S.; Dovey, M. C.; Gravestock, D. Eur. J.
Org. Chem. 2005, 505–511.
4. Nukui, S.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Org.
Chem. 1995, 398–404.
5. Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovic,
J.; Terrel, R. J. Am. Chem. Soc. 1963, 207–222.
6. House, O. H.; Chu, C.; Phillips, W. V.; Sayer, T. S. B.;
Yau, C. J. Org. Chem. 1977, 42, 1709–1717.
7. Crandall, J. K.; Magaha, H. S.; Henderson, M. A.;
Widener, R. K.; Tharp, G. A. J. Org. Chem. 1982, 47,
5372–5380.
14. Data for 9: pale yellow oil; m/z (ESI, HPLC–MS) 210.2
(8.9 · 105, M+H+).
dH (400 MHz, CDCl3; Me4Si) for the Z-isomer (minor)
4.37 (1H, br, C@CHCO2Et), 4.17 (2H, q, J1 = 7.5 Hz,
CO2CH2), 3.20 (3H, m, 3-H2, 9-H), 2.87 (2H, tt,
J1 = 3.2 Hz, J2 = 14.8 Hz, 6-H2), 1.22 (3H, t, J1 =