steps.10 Oxidation of 18 with pyridinium chlorochromate (PCC)
on alumina,11 followed by treatment with propane-1,3-dithiol in
the presence of BF3·OEt2 gave diol 19 in 63% yield. Glycol
cleavage and subsequent modified Wittig–Horner reaction12
gave desired Z-alkene 20 (63% yield) along with its E-isomer
(14%). DIBAL-H reduction of 20 followed by protection of the
resulting alcohol function provided 2-pyranone precursor 22 in
68% yield from 20.
26 to furnish 1 in 87% yield. The spectroscopic (1H and 13C
NMR) data for synthetic 1 were identical with those of natural
PA-48153C, and the physical properties of 1 [mp, 74–76 °C;
21
27
[a]D 2 141 (c 0.18, CHCl3); lit.1,2b mp, 78–79 °C; [a]D
,
2143.71 (c 0.5, CHCl3); 2136.62b (c 1, CHCl3)] showed a good
accord with those reported for the natural product.
We thank Dr Kenji Kawada (Shionogi & Co., Ltd., Osaka,
Japan) for providing us with natural PA-48153C. We also thank
Yokohama Rubber Co. Ltd., (Tokyo, Japan) for the gift of
l-quebrachitol. Financial support of the Moritani Scholarship
Foundation is gratefully acknowledged.
Deprotonation of 22 with tert-butyllithium in the presence of
hexamethylphosphoramide (HMPA),13 followed by addition of
epoxide 17 afforded the coupling product 23 in 56% yield.
Deprotection of the dithioacetal function in 23 was achieved by
14a
treatment with N-chlorosuccinimide (NCS) and AgNO3
in
Footnotes
the presence of 2,4,6-collidine14b§ to give 24 quantitatively.
Reduction of the ketone carbonyl in 24 with NaBH(OAc)315 in
MeCN–AcOH afforded anti-diol 25 as the major product in
65% isolated yield (syn isomer 25% yield). Removal of the
O-silyl protecting group in 25 afforded triol 26 in 82% yield.
The final step was successfully achieved by MnO2 oxidation of
* E-mail: chida@applc.keio.ac.jp
† When this reaction was carried out with TsCl and DMAP in pyridine at
50 °C, compound 4 and its positional isomer (5-O-tosylate) were obtained
in 37 and 22 isolated yield, respectively.
‡ Reaction of 12 (or its corresponding O-triflate derivative) with prop-
1-enyllithium in the presence of CuI salts directly afforded 15, however, the
yield of 15 was low (less than 10%).
§ In the absence of collidine, the formation of cyclic hemi-ketal derivative,
which arose from undesired deprotection of O-silyl group, was observed.
O
i
O
L-malic acid
HO
References
1 T. Yoshida, K. Koizumi, Y. Kawamura, K. Matsumoto and H. Itazaki,
Jpn. Pat. Kokai, 1993, 5-310 726; Eur. Pat., 1993, 560 389 A1.
2 (a) S.Kobayashi, K. Tsuchiya, T. Harada, M. Nishide, T. Kurokawa,
T. Nakagawa, N. Shimada and K. Kobayashi, J. Antibiot., 1994, 47, 697;
(b) S. Kobayashi, K. Tsuchiya, T. Kurokawa, T. Nakagawa, N. Shimada
and Y. Iitaka, J. Antibiot., 1994, 47, 703.
3 K. Yasui, Y. Tamura, T. Nakatani, K. Kawada and M. Ohtani, J. Org.
Chem., 1995, 60, 7567; M. K. Gurjar, J. T. Henri Jr, D. S. Bose and
A. V. Rama Rao, Tetrahedron Lett., 1996, 37, 6615; M. K. Gurjar,
A. Chakrabarti and A. V. Rama Rao, Heterocycles, 1997, 45, 7.
4 K. Yasui, Y. Tamura, T. Nakatani, I. Horibe, K. Kawada, K. Koizumi,
R. Suzuki and M. Ohtani, J. Antibiot., 1996, 49, 173.
18
ii
R
iii
S
OH
S
OH
S
S
19
20 R = CO2Me
iv
v
21 R = CH2OH
22 R = CH2OSiMe2But
5 Isolation of l-quebrachitol, see; J. van Alphen, Ind. Eng. Chem., 1951,
43, 141; N. Chida, M. Suzuki, M. Suwama and S. Ogawa, J. Carbohydr.
Chem., 1989, 8, 319.
6 Utilisation of l-quebrachitol in organic synthesis, see; (a) N. Chida,
K. Yamada and S. Ogawa, J. Chem. Soc., Perkin Trans. 1, 1993, 1957;
(b) N. Chida and S. Ogawa, Chem. Commun., 1997, 807; J. J. Kiddle,
Chem. Rev., 1995, 95, 2189.
Scheme 2 Reagents and conditions: i, see ref. 10(a); ii, PCC, Al2O3,
CH2Cl2, room temp., then 1,3-propanedithiol (1.5 equiv.), BF3·OEt2 (0.3
equiv.), CH2Cl2, room temp.; iii, Pb(OAc)4, K2CO3, benzene, room temp.,
then (CF3CH2O)2P(O)CH2CO2Me, KN(SiMe3)2, 18-crown-6, THF,
278 °C; iv, DIBAL-H CH2Cl2, 278 °C; v, tert-butyldimethylsilyl
trifluoromethanesulfonate, 2,6-lutidine, CH2Cl2, 0 °C
7 Y. Tsuda, M. Nishimura, T. Kobayashi, Y. Sato and K. Kanemitsu,
Chem. Pharm. Bull., 1991, 39, 2883; S. David and S. Hanessian,
Tetrahedron, 1985, 41, 643.
OSiMe2But
8 K. Takai, K. Nitta and K. Utimoto, J. Am. Chem. Soc., 1986, 108, 7408;
T. Okazoe, K. Takai and K. Utimoto, J. Am. Chem. Soc., 1987, 109,
951.
OMe OH
X
i
22
9 L. Hughes, Org. React., 1993, 42, 656.
10 (a) M. Nakata, T. Ishiyama, S. Akamatsu, Y. Hirose, H. Maruoka,
R. Suzuki and K. Tatsuta, Bull. Chem. Soc. Jpn., 1995, 68, 967; (b)
D. Wasmuth, D. Arigoni and D. Seebach, Helv. Chim. Acta, 1982, 65,
344.
23 X = S[CH2]3S
24 X = O
ii
iii
OR
11 Y.-S. Cheng, W.-L. Liu and S. Chen, Synthesis, 1980, 223.
12 W. C. Still and C. Gennari, Tetrahedron Lett., 1983, 24, 4405.
13 K. C. Nicolaou, K. Ajito, A. P. Patron, H. Khatuya, P. K. Richter and
P. Bertinato, J. Am. Chem. Soc., 1996, 118, 3059.
OMe OH OH
v
1
14 (a) E. J. Corey and B. W. Erickson, J. Org. Chem., 1971, 36, 3553;
(b) S. Shimizu, S. Nakamura, M. Nakada and M. Shibasaki, Tetra-
hedron, 1996, 52, 13363.
15 D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc.,
1988, 110, 3560; A. K. Saksena and P. Magiaracina, Tetrahedron Lett.,
1983, 24, 273.
25 R = SiMe2But
26 R = H
iv
Scheme 3 Reagents and conditions: i, ButLi, HMPA, THF, 278 °C, 10 min,
then THF solution of 17, 278 °C, 30 min; ii, NCS (4 equiv.), AgNO3 (4.5
equiv.), 2,4,6-collidine (8 equiv.), MeCN–H2O (4:1), 0 °C, 1 min; iii,
NaBH(OAc)3, MeCN–AcOH (2:1), 0 °C, 5 h; iv, tetrabutylammonium
fluoride, THF, room temp.; v, MnO2, CH2Cl2, room temp., 3 h
Received in Cambridge, UK, 28th February 1997; Com.
7/01404J
1044
Chem. Commun., 1997